Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447767

RESUMO

The use of Unmanned Aerial Vehicle (UAV) images for biomass and nitrogen estimation offers multiple opportunities for improving rice yields. UAV images provide detailed, high-resolution visual information about vegetation properties, enabling the identification of phenotypic characteristics for selecting the best varieties, improving yield predictions, and supporting ecosystem monitoring and conservation efforts. In this study, an analysis of biomass and nitrogen is conducted on 59 rice plots selected at random from a more extensive trial comprising 400 rice genotypes. A UAV acquires multispectral reflectance channels across a rice field of subplots containing different genotypes. Based on the ground-truth data, yields are characterized for the 59 plots and correlated with the Vegetation Indices (VIs) calculated from the photogrammetric mapping. The VIs are weighted by the segmentation of the plants from the soil and used as a feature matrix to estimate, via machine learning models, the biomass and nitrogen of the selected rice genotypes. The genotype IR 93346 presented the highest yield with a biomass gain of 10,252.78 kg/ha and an average daily biomass gain above 49.92 g/day. The VIs with the highest correlations with the ground-truth variables were NDVI and SAVI for wet biomass, GNDVI and NDVI for dry biomass, GNDVI and SAVI for height, and NDVI and ARVI for nitrogen. The machine learning model that performed best in estimating the variables of the 59 plots was the Gaussian Process Regression (GPR) model with a correlation factor of 0.98 for wet biomass, 0.99 for dry biomass, and 1 for nitrogen. The results presented demonstrate that it is possible to characterize the yields of rice plots containing different genotypes through ground-truth data and VIs.


Assuntos
Oryza , Oryza/genética , Biomassa , Ecossistema , Genótipo
2.
J Exp Bot ; 69(16): 4017-4032, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29767744

RESUMO

A diversity panel comprising of 296 indica rice genotypes was phenotyped under non-stress and water-deficit stress conditions during the reproductive stage in the 2013 and 2014 dry seasons (DSs) at IRRI, Philippines. We investigated the genotypic variability for grain yield, yield components, and related traits, and conducted genome-wide association studies (GWAS) using high-density 45K single nucleotide polymorphisms. We detected 38 loci in 2013 and 64 loci in 2014 for non-stress conditions and 69 loci in 2013 and 55 loci in 2014 for water-deficit stress. Desynchronized flowering time confounded grain yield and its components under water-deficit stress in the 2013 experiment. Statistically corrected grain yield and yield component values using days to flowering helped to detect 31 additional genetic loci for grain yield, its components, and the harvest index in 2013. There were few overlaps in the detected loci between years and treatments, and when compared with previous studies using the same panel, indicating the complexity of yield formation under stress. Nevertheless, our analyses provided important insights into the potential links between grain yield with seed set and assimilate partitioning. Our findings demonstrate the complex genetic architecture of yield formation and we propose exploring the genetic basis of less complex component traits as an alternative route for further yield enhancement.


Assuntos
Secas , Estudo de Associação Genômica Ampla , Oryza/genética , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Oryza/fisiologia , Reprodução/fisiologia
3.
Glob Chang Biol ; 24(5): 2035-2050, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29369459

RESUMO

Rice is the most important food crop in the developing world. For rice production systems to address the challenges of increasing demand and climate change, potential and on-farm yield increases must be increased. Breeding is one of the main strategies toward such aim. Here, we hypothesize that climatic and atmospheric changes for the upland rice growing period in central Brazil are likely to alter environment groupings and drought stress patterns by 2050, leading to changing breeding targets during the 21st century. As a result of changes in drought stress frequency and intensity, we found reductions in productivity in the range of 200-600 kg/ha (up to 20%) and reductions in yield stability throughout virtually the entire upland rice growing area (except for the southeast). In the face of these changes, our crop simulation analysis suggests that the current strategy of the breeding program, which aims at achieving wide adaptation, should be adjusted. Based on the results for current and future climates, a weighted selection strategy for the three environmental groups that characterize the region is suggested. For the highly favorable environment (HFE, 36%-41% growing area, depending on RCP), selection should be done under both stress-free and terminal stress conditions; for the favorable environment (FE, 27%-40%), selection should aim at testing under reproductive and terminal stress, and for the least favorable environment (LFE, 23%-27%), selection should be conducted for response to reproductive stress only and for the joint occurrence of reproductive and terminal stress. Even though there are differences in timing, it is noteworthy that stress levels are similar across environments, with 40%-60% of crop water demand unsatisfied. Efficient crop improvement targeted toward adaptive traits for drought tolerance will enhance upland rice crop system resilience under climate change.


Assuntos
Mudança Climática , Secas , Oryza/fisiologia , Aclimatação , Brasil , Previsões , Água
4.
Front Plant Sci ; 8: 994, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659945

RESUMO

We evaluated the yields of Oryza sativa L. 'Nipponbare' rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT) and wild-type (WT) controls, providing 50-90% increases in grain yield (GY). Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.

5.
Front Plant Sci ; 7: 1384, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703460

RESUMO

Number of spikelets per panicle (NSP) is a key trait to increase yield potential in rice (O. sativa). The architecture of the rice inflorescence which is mainly determined by the length and number of primary (PBL and PBN) and secondary (SBL and SBN) branches can influence NSP. Although several genes controlling panicle architecture and NSP in rice have been identified, there is little evidence of (i) the genetic control of panicle architecture and NSP in different environments and (ii) the presence of stable genetic associations with panicle architecture across environments. This study combines image phenotyping of 225 accessions belonging to a genetic diversity array of indica rice grown under irrigated field condition in two different environments and Genome Wide Association Studies (GWAS) based on the genotyping of the diversity panel, providing 83,374 SNPs. Accessions sown under direct seeding in one environement had reduced Panicle Length (PL), NSP, PBN, PBL, SBN, and SBL compared to those established under transplanting in the second environment. Across environments, NSP was significantly and positively correlated with PBN, SBN and PBL. However, the length of branches (PBL and SBL) was not significantly correlated with variables related to number of branches (PBN and SBN), suggesting independent genetic control. Twenty- three GWAS sites were detected with P ≤ 1.0E-04 and 27 GWAS sites with p ≤ 5.9E-04. We found 17 GWAS sites related to NSP, 10 for PBN and 11 for SBN, 7 for PBL and 11 for SBL. This study revealed new regions related to NSP, but only three associations were related to both branching number (PBN and SBN) and NSP. Two GWAS sites associated with SBL and SBN were stable across contrasting environments and were not related to genes previously reported. The new regions reported in this study can help improving NSP in rice for both direct seeded and transplanted conditions. The integrated approach of high-throughput phenotyping, multi-environment field trials and GWAS has the potential to dissect complex traits, such as NSP, into less complex traits and to match single nucleotide polymorphisms with relevant function under different environments, offering a potential use for molecular breeding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa