Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Learn Mem ; 22(5): 278-88, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25903452

RESUMO

Time-place learning (TPL) offers the possibility to study the functional interaction between cognition and the circadian system with aging. With TPL, animals link biological significant events with the location and the time of day. This what-where-when type of memory provides animals with an experience-based daily schedule. Mice were tested for TPL five times throughout their lifespan and showed (re)learning from below chance level at the age of 4, 7, 12, and 18 mo. In contrast, at the age of 22 mo these mice showed preservation of TPL memory (absence of memory loss), together with deficiencies in the ability to update time-of-day information. Conversely, the majority of untrained (naïve) mice at 17 mo of age were unable to acquire TPL, indicating that training had delayed TPL deficiencies in the mice trained over lifespan. Two out of seven naïve mice, however, compensated for correct performance loss by adapting an alternative learning strategy that is independent of the age-deteriorating circadian system and presumably less cognitively demanding. Together, these data show the age-sensitivity of TPL, and the positive effects of repeated training over a lifetime. In addition, these data shed new light on aging-related loss of behavioral flexibility to update time-of-day information.


Assuntos
Envelhecimento/psicologia , Cognição/fisiologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Memória/fisiologia , Animais , Masculino , Camundongos
2.
3.
Front Nutr ; 8: 718658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568405

RESUMO

The aging process is often accompanied by increase in body weight. Older adults with overweight or obesity might have an overconsumption in energy that is accompanied by inadequate intake of protein, vitamin D, and calcium. It is unclear if intake of protein and vitamin D and calcium is sufficient in older adults with overweight/obesity, and whether it differs from older adults with normal weight, since a recent overview of the literature review is lacking. Therefore, we systematically analyzed the current evidence on differences in nutrient intake/status of protein, vitamin D and calcium between older adults with different body mass index (BMI) categories. Randomized controlled trials and prospective cohort studies were identified from PubMed and EMBASE. Studies reporting nutrient intake/status in older adults aged ≥50 years with overweight/obesity and studies comparing between overweight/obesity and normal weight were included. Nutrient intake/status baseline values were reviewed and when possible calculated for one BMI category (single-group meta-analysis), or compared between BMI categories (meta-analysis). Nutrient intake/status was compared with international recommendations. Mean protein (N = 8) and calcium intake (N = 5) was 0.98 gram/kilogram body weight/day (g/kg/d) [95% Confidence Interval (CI) 0.89-1.08] and 965 mg [95% CI: 704-1225] in overweight/obese. Vitamin D intake was insufficient in all BMI categories (N = 5). The pooled mean for vitamin D intake was 6 ug [95% CI 4-9]. For 25(OH)D, the pooled mean was 54 nmol/L [95% CI 45-62], 52 nmol/L [95% CI 46-58], and 48 nmol/l [95% CI 33-62] in normal (N = 7), combined overweight and obese (N = 12), and obese older adults (N = 4), respectively. In conclusion, older adults with overweight and obesity have a borderline sufficient protein and sufficient calcium intake, but insufficient vitamin D intake. The 25(OH)D concentration is deficient for the obese older adults.

4.
Nutrients ; 11(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626095

RESUMO

Protein oxidation may play a role in the balance between anabolism and catabolism. We assessed the effect of a protein restricted diet on protein oxidation as a possible reflection of whole body protein metabolism. Sixteen healthy males (23 ± 3 years) were instructed to use a 4-day isocaloric protein restricted diet (0.25 g protein/kg body weight/day). Their habitual dietary intake was assessed by a 4-day food diary. After an overnight fast, a 30 g 13C-milk protein test drink was administered, followed by 330 min breath sample collection. Protein oxidation was measured by Isotope Ratio Mass Spectrometry. To assess actual change in protein intake from 24-h urea excretion, 24-h urine was collected. During the 4-day protein restricted diet, the urinary urea:creatinine ratio decreased by 56 ± 9%, which is comparable to a protein intake of ~0.65 g protein/kg body weight/day. After the protein restricted diet, 30.5 ± 7.3% of the 30 g 13C-milk protein was oxidized over 330 min, compared to 31.5 ± 6.4% (NS) after the subject's habitual diet (1.3 ± 0.3 g protein/kg body weight/day). A large range in the effect of the diet on protein oxidation (-43.2% vs. +44.0%) was observed. The residual standard deviation of the measurements was very small (0.601 ± 0.167). This suggests that in healthy males, protein oxidation is unaffected after a protein restricted diet. It is uncertain how important the role of fluctuations in short-term protein oxidation is within whole body protein metabolism.


Assuntos
Dieta com Restrição de Proteínas , Proteínas Alimentares/metabolismo , Comportamento Alimentar/fisiologia , Adulto , Testes Respiratórios , Creatinina/metabolismo , Registros de Dieta , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Humanos , Masculino , Proteínas do Leite/metabolismo , Oxirredução , Valores de Referência , Ureia/metabolismo , Adulto Jovem
5.
PLoS One ; 14(11): e0225803, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31765432

RESUMO

The capacity to utilize ingested protein for optimal support of protein synthesis and lean body mass is described within the paradigm of anabolic competence. Protein synthesis can be stimulated by physical exercise, however, it is not known if physical exercise affects post-exercise protein oxidation. Characterization of the driving forces behind protein oxidation, such as exercise, can contribute to improved understanding of whole body protein metabolism. The purpose of this study is to determine the effect of two levels of aerobic exercise intensity on immediate post-exercise exogenous protein oxidation. Sixteen healthy males with a mean (SD) age of 24 (4) years participated. The subjects' VO2-max was estimated with the Åstrand cycling test. Habitual dietary intake was assessed with a three-day food diary. Exogenous protein oxidation was measured by isotope ratio mass spectrometry. These measurements were initiated after the ingestion of a 30 g 13C-milk protein test drink that was followed by 330 minutes breath sample collection. On three different days with at least one week in between, exogenous protein oxidation was measured: 1) during rest, 2) after 15 minutes of aerobic exercise at 30% of VO2-max (moderate intensity), and 3) after 15 minutes of aerobic exercise at 60% of VO2-max (vigorous intensity). After vigorous intensity aerobic exercise, 31.8%±8.0 of the 30 g 13C-milk protein was oxidized compared to 26.2%±7.1 during resting condition (p = 0.012), and 25.4%±7.6 after moderate intensity aerobic exercise compared to resting (p = 0.711). In conclusion, exogenous protein oxidation is increased after vigorous intensity aerobic exercise which could be the result of an increased protein turnover rate.


Assuntos
Exercício Físico , Proteínas do Leite/química , Adolescente , Adulto , Testes Respiratórios , Voluntários Saudáveis , Humanos , Marcação por Isótopo , Masculino , Espectrometria de Massas , Proteínas do Leite/metabolismo , Oxirredução , Consumo de Oxigênio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa