RESUMO
This study explores how muscle and liver energy stores are linked with social status and the social environment in Neolamprologus pulcher, a cooperatively breeding fish that lives in colonies comprised of up to 200 distinct social groups. Subordinate muscle energy stores were positively correlated with the number of neighbouring social groups in the colony, but this pattern was not observed in dominant N. pulcher. Furthermore, liver energy stores were smaller in dominants living at the edge of the colony compared with those living in the colony centre, with no differences among subordinates in liver energy stores. Subordinate N. pulcher may build up large energy stores in the muscles to fuel rapid growth after dispersal, which could occur more frequently in high-density environments. Dominant N. pulcher may use the more easily mobilized energy stores in the liver to fuel daily activities, which could be more energetically demanding on the edge of the colony as a result of the increased predation defence needed on the edge. Overall, this study demonstrates that both subordinate and dominant physiology in N. pulcher varies with characteristics of the social environment. Furthermore, dominant and subordinate energy storage strategies appear to differ due to status-dependent variation in daily activities and variation in the need to prepare for future reproductive or dispersal opportunities.
Assuntos
Ciclídeos/fisiologia , Metabolismo Energético/fisiologia , Músculos/metabolismo , Predomínio Social , Meio Social , Animais , Feminino , Modelos Lineares , Fígado/metabolismo , Masculino , Tamanho do Órgão , Comportamento Predatório , Reprodução/fisiologiaRESUMO
To survive, animals must respond appropriately to stress. Stress responses are costly, so early-life experiences with potential stressors could adaptively tailor adult stress responses to local conditions. However, how multiple stressors influence the development of the stress response remains unclear, as is the role of sex. Trinidadian guppies (Poecilia reticulata) are small fish with extensive life-history differences between the sexes and population variation in predation pressure and social density. We investigated how sex and early-life experience influence hormonal stress responses by manipulating conspecific density and perceived predation risk during development. In adults, we sampled cortisol twice to measure initial release and change over time in response to a recurring stressor. The sexes differed considerably in their physiological stress response. Males released more cortisol for their body mass than females and did not reduce cortisol release over time. By contrast, all females, except those reared at high density together with predation cues, reduced cortisol release over time. Cortisol responses of males were thus less dynamic in response to current circumstances and early-life experiences than females, consistent with life-history differences between the sexes. Our study underscores the importance of early-life experiences, interacting ecological factors and sex differences in the organization of the stress response.