Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(3): 1119-1132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735729

RESUMO

Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought-related mortality derived from measurements of tree-ring growth (ring width index; RWI) and carbon isotope discrimination (∆13 C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012-2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13 C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13 C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine-dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management-particularly in drier regions-may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.


Assuntos
Pinus , Árvores , California , Secas , Florestas , Pinus ponderosa
2.
Glob Chang Biol ; 24(9): 3922-3937, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29658158

RESUMO

Forests sequester large amounts of carbon annually and are integral in buffering against effects of global change. Increasing atmospheric CO2 may enhance photosynthesis and/or decrease stomatal conductance (gs ) thereby enhancing intrinsic water-use efficiency (iWUE), having potential indirect and direct benefits to tree growth. While increasing iWUE has been observed in most trees globally, enhanced growth is not ubiquitous, possibly due to concurrent climatic constraints on growth. To investigate our incomplete understanding of interactions between climate and CO2 and their impacts on tree physiology and growth, we used an environmental gradient approach. We combined dendrochronology with carbon isotope analysis (δ13 C) to assess the covariation of basal area increment (BAI) and iWUE over time in lodgepole pine. Trees were sampled at 18 sites spanning two climatically distinct elevation transects on the lee and windward sides of the Continental Divide, encompassing the majority of lodgepole pine's northern Rocky Mountain elevational range. We analyzed BAI and iWUE from 1950 to 2015, and explored correlations with monthly climate variables. As expected, iWUE increased at all sites. However, concurrent growth trends depended on site climatic water deficit (CWD). Significant growth increases occurred only at the driest sites, where increases in iWUE were strongest, while growth decreases were greatest at sites where CWD has been historically lowest. Late summer drought of the previous year negatively affected growth across sites. These results suggest that increasing iWUE, if strong enough, may indirectly benefit growth at drier sites by effectively extending the growing season via reductions in gs . Strong growth decreases at high elevation windward sites may reflect increasing water stress as a result of decreasing snowpack, which was not offset by greater iWUE. Our results imply that increasing iWUE driven by decreasing gs may benefit tree growth in limited scenarios, having implications for future carbon uptake potential of semiarid ecosystems.


Assuntos
Dióxido de Carbono/farmacologia , Florestas , Pinus/efeitos dos fármacos , Árvores/efeitos dos fármacos , Carbono , Isótopos de Carbono/análise , Sequestro de Carbono , Secas , Fotossíntese , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Árvores/crescimento & desenvolvimento
3.
Oecologia ; 181(1): 65-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26822944

RESUMO

Quantifying the variation in plant-water relations and photosynthesis over environmental gradients and during unique events can provide a better understanding of vegetation patterns in a future climate. We evaluated the hypotheses that photosynthesis and plant water potential would correspond to gradients in precipitation and soil moisture during a lengthy drought, and that experimental water additions would increase photosynthesis for the widespread evergreen shrub Artemisia tridentata ssp. vaseyana. We quantified abiotic conditions and physiological characteristics for control and watered plants at 2135, 2315, and 2835 m near Mammoth Lakes, CA, USA, at the ecotone of the Sierra Nevada and Great Basin ecoregions. Snowfall, total precipitation, and soil moisture increased with elevation, but air temperature and soil N content did not. Plant water potential (Ψ), stomatal conductance (g s), maximum photosynthetic rate (A max), carboxylation rate (V cmax), and electron transport rate (J max) all significantly increased with elevations. Addition of water increased Ψ, g s, J max, and A max only at the lowest elevation; g s contributed about 30 % of the constraints on photosynthesis at the lowest elevation and 23 % at the other two elevations. The physiology of this foundational shrub species was quite resilient to this 1-in-1200 year drought. However, plant water potential and photosynthesis corresponded to differences in soil moisture across the gradient. Soil re-wetting in early summer increased water potential and photosynthesis at the lowest elevation. Effects on water relations and photosynthesis of this widespread, cold desert shrub species may be disproportionate at lower elevations as drought length increases in a future climate.


Assuntos
Aclimatação , Altitude , Artemisia/fisiologia , Mudança Climática , Secas , Fotossíntese , Água/fisiologia , California , Clima , Transporte de Elétrons , Nitrogênio , Estações do Ano , Solo/química , Temperatura
4.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38123513

RESUMO

Trees use nonstructural carbohydrates (NSCs) to support many functions, including recovery from disturbances. However, NSC's importance for recovery following fire and whether NSC depletion contributes to post-fire delayed mortality are largely unknown. We investigated how fire affects NSCs based on fire-caused injury from a prescribed fire in a young Pinus ponderosa (Lawson & C. Lawson) stand. We assessed crown injury (needle scorch and bud kill) and measured NSCs of needles and inner bark (i.e., secondary phloem) of branches and main stems of trees subject to fire and at an adjacent unburned site. We measured NSCs pre-fire and at six timesteps post-fire (4 days-16 months). While all trees initially survived the fire, NSC concentrations declined quickly in burned trees relative to unburned controls over the same post-fire period. This decline was strongest for trees that eventually died, but those that survived recovered to unburned levels within 14 months post-fire. Two months post-fire, the relationship between crown scorch and NSCs of the main stem inner bark was strongly negative (Adj-R2 = 0.83). Our results support the importance of NSCs for tree survival and recovery post-fire and suggest that post-fire NSC depletion is in part related to reduced photosynthetic leaf area that subsequently limits carbohydrate availability for maintaining tree function. Crown scorch is a commonly measured metric of tree-level fire severity and is often linked to post-fire tree outcome (i.e., recovery or mortality). Thus, our finding that NSC depletion may be the mechanistic link between the fire-caused injury and tree outcome will help improve models of post-fire tree mortality and forest recovery.


Assuntos
Carboidratos , Árvores , Carboidratos/química , Florestas , Pinus ponderosa , Fotossíntese
5.
Sci Total Environ ; 750: 141306, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846245

RESUMO

Tree mortality associated with drought and concurrent bark beetle outbreaks is expected to increase with further climate change. When these two types of disturbance occur in concert it complicates our ability to accurately predict future forest mortality. The recent extreme California USA drought and bark beetle outbreaks resulted in extensive tree mortality and provides a unique opportunity to examine questions of why some trees die while others survive these co-occurring disturbances. We use plot-level data combined with a three-proxy tree-level approach using radial growth, carbon isotopes, and resin duct metrics to evaluate 1) whether variability in stand structure, tree growth or size, carbon isotope discrimination, or defenses precede mortality, 2) how relationships between these proxies differ for surviving and now-dead trees, and 3) whether generalizable risk factors for tree mortality exist across pinyon pine (Pinus monophylla), ponderosa pine (P. ponderosa), white fir (Abies concolor), and incense cedar (Calocedrus decurrens) affected by the combination of drought and beetle outbreaks. We find that risk factors associated with mortality differ between species, and that few generalizable patterns exist when bark beetle outbreaks occur in concert with a particularly long, hot drought. We see evidence that both long-term differences in physiology and shorter-term beetle-related selection and variability in defenses influence mortality susceptibility for ponderosa pine, whereas beetle dynamics may play a more prominent role in mortality patterns for white fir and pinyon pine. In contrast, incense cedar mortality appears to be attributable to long-term effects of growth suppression. Risk factors that predispose some trees to drought and beetle-related mortality likely reflect species-specific strategies for dealing with these particular disturbance types. The combined influence of beetles and drought necessitates the consideration of multiple, species-specific risk factors to more accurately model forest mortality in the face of similar extreme events more likely under future climates.


Assuntos
Besouros , Pinus , Animais , Surtos de Doenças , Secas , Casca de Planta , Árvores
6.
MethodsX ; 7: 101035, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32939350

RESUMO

Resin ducts in the secondary xylem of tree rings are a measure of a tree's defense capacity from insects and pathogens. Because resin ducts are permanently embedded within the xylem, retrospective analysis can be performed to quantify changes in defense over time and determine factors that contribute to this change, such as climate and disturbance. Here, we provide methods on how to measure axial resin ducts in secondary xylem. These methods provide the necessary protocols for consistent quantification of xylem resin ducts and terminology, which will also allow easier cross-comparison among studies in the future. We describe:•Steps to prepare tree cores for resin duct measurements.•Procedure to obtain image and measure individual resin ducts.•Software code to compile duct measurements into a complete chronology with both standardized and unstandardized resin duct metrics for further analyses.

8.
Data Brief ; 20: 558-561, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30197912

RESUMO

This article contains measurements of raw radial growth, distance to pith, and calculated basal area increments (BAI) from 444 5-mm increment cores (237 trees) collected in July 2016 from the Beaverhead-Deerlodge National Forest, MT. These data were used for the study presented in "Mountain pine beetle attack faster growing lodgepole pine at low elevations in western Montana, USA" [1]. Plot locations where increment cores were taken as well as code to calculate BAI are also included. Cores were collected from lodgepole pine (Pinus contorta) trees that were killed during a recent bark beetle outbreak (220 cores; 117 trees) as well as trees that survived the outbreak (210 cores; 113 trees) in twelve stands spanning north and south aspects and three elevational bands along a 600-m gradient. 14 additional cores were collected from 7 strip-attacked trees. Increment cores were prepared and measured using standard dendrochronological techniques, "An Introduction to Tree-Ring Dating" [2]. Master chronologies for each aspect-elevation combination were created using approximately ten cores from surviving trees at each location. Cores were cross-dated, then scanned at 2400 dpi. Annual ring widths were measured using CooRecorder 7.7, "Cybis Electronic, CDendro and CooRecorder V.7.7" [3], and final chronologies were quantitatively validated in COFECHA, "Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Society" [4].

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa