RESUMO
The introduction of volatile-rich subducting slabs to the mantle may locally generate large redox gradients, affecting phase stability, element partitioning and volatile speciation1. Here we investigate the redox conditions of the deep mantle recorded in inclusions in a diamond from Kankan, Guinea. Enstatite (former bridgmanite), ferropericlase and a uniquely Mg-rich olivine (Mg# 99.9) inclusion indicate formation in highly variable redox conditions near the 660 km seismic discontinuity. We propose a model involving dehydration, rehydration and dehydration in the underside of a warming slab at the transition zone-lower mantle boundary. Fluid liberated by dehydration in a crumpled slab, driven by heating from the lower mantle, ascends into the cooler interior of the slab, where the H2O is sequestered in new hydrous minerals. Consequent fractionation of the remaining fluid produces extremely reducing conditions, forming Mg-end-member ringwoodite. This fractionating fluid also precipitates the host diamond. With continued heating, ringwoodite in the slab surrounding the diamond forms bridgmanite and ferropericlase, which is trapped as the diamond grows in hydrous fluids produced by dehydration of the warming slab.
RESUMO
Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72â h of beam time.