Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791488

RESUMO

Many proteins are localized at the vacuolar membrane, but most of them are still poorly described, due to the inaccessibility of this membrane from the extracellular environment. This work focused on the characterization of the CAT2 transporter from S. lycopersicum (SlCAT2) that was previously overexpressed in E. coli and reconstituted in proteoliposomes for transport assay as [³H]Arg uptake. The orientation of the reconstituted transporter has been attempted and current data support the hypothesis that the protein is inserted in the liposome in the same orientation as in the vacuole. SlCAT2 activity was dependent on the pH, with an optimum at pH 7.5. SlCAT2 transport activity was stimulated by the increase of internal osmolality from 0 to 175 mOsmol while the activity was inhibited by the increase of external osmolality. K⁺, Na⁺, and Mg2+ present on the external side of proteoliposomes at physiological concentrations, inhibited the transport activity; differently, the cations had no effect when included in the internal proteoliposome compartment. This data highlighted an asymmetric regulation of SlCAT2. Cholesteryl hemisuccinate, included in the proteoliposomal membrane, stimulated the SlCAT2 transport activity. The homology model of the protein was built using, as a template, the 3D structure of the amino acid transporter GkApcT. Putative substrate binding residues and cholesterol binding domains were proposed. Altogether, the described results open new perspectives for studying the response of SlCAT2 and, in general, of plant vacuolar transporters to metabolic and environmental changes.


Assuntos
Arginina/metabolismo , Transportador 2 de Aminoácidos Catiônicos/metabolismo , Cátions/metabolismo , Pressão Osmótica , Vacúolos/metabolismo , Transporte Biológico , Transportador 2 de Aminoácidos Catiônicos/administração & dosagem , Transportador 2 de Aminoácidos Catiônicos/química , Transportador 2 de Aminoácidos Catiônicos/genética , Relação Dose-Resposta a Droga , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lipossomos , Modelos Moleculares , Conformação Molecular , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
2.
Gene ; 286(1): 33-41, 2002 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-11943458

RESUMO

The ribosomal protein S4 gene (rps4) has been identified as a single copy sequence in the mitochondrial genomes of two distant higher plants, Magnolia and Helianthus. Sequence analysis revealed that the rps4 genes present in the magnolia and sunflower mitochondrial genomes encode S4 polypeptides of 352 and 331 amino acids, respectively, longer than their counterparts in liverwort and bacteria. Expression of the rps4 genes in the investigated higher plant mitochondria was confirmed by Western blot analysis. In Helianthus, one of two short nucleotide insertions at the 3'-end introduces in the coding region a premature termination codon. Northern hybridizations and reverse transcription-polymerase chain reaction analysis demonstrated that the monocistronic RNA transcripts generated from the rps4 locus in Magnolia and Helianthus mitochondria are modified by RNA editing at 28 and 13 positions, respectively. Although evolutionarily conserved, RNA editing requirements of the rps4 appear more extensive in Magnolia than in Helianthus and in the other higher plants so far investigated. Furthermore, our analysis also suggests that selection of editing sites is RNA sequence-specific in a duplicated sequence context.


Assuntos
DNA Mitocondrial/genética , Helianthus/genética , Magnoliopsida/genética , Edição de RNA/genética , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Sequência de Bases , Southern Blotting , Western Blotting , DNA de Plantas/química , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transcrição Gênica
3.
Mitochondrion ; 11(2): 360-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21059409

RESUMO

RNA editing is a post-transcriptional molecular process whereby the information in a genetic message is modified from that in the corresponding DNA template by means of nucleotide substitutions, insertions and/or deletions. It occurs mostly in organelles by clade-specific diverse and unrelated biochemical mechanisms. RNA editing events have been annotated in primary databases as GenBank and at more sophisticated level in the specialized databases REDIdb, dbRES and EdRNA. At present, REDIdb is the only freely available database that focuses on the organellar RNA editing process and annotates each editing modification in its biological context. Here we present an updated and upgraded release of REDIdb with a web-interface refurbished with graphical and computational facilities that improve RNA editing investigations. Details of the REDIdb features and novelties are illustrated and compared to other RNA editing databases. REDIdb is freely queried at http://biologia.unical.it/py_script/REDIdb/.


Assuntos
Biologia Computacional , Organelas/metabolismo , Edição de RNA , Sistemas de Gerenciamento de Base de Dados
4.
Plant Physiol Biochem ; 48(8): 646-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20605476

RESUMO

According to PCR assays and sequencing, we now report the shared presence of two rps3 introns, namely the rps3i74 and the rps3i249, in the mitochondria of all the classes representing the surviving lineages of gymnosperms, and unveil several lineages experiencing intron loss. Interestingly, the rps3 intron gains and losses within the four groups of gymnosperms let us sort out the Pinaceae and the non-Pinaceae into intron (+)- and intron (-)-lineages, respectively. Worthy of mention is also the finding that only Gnetum within the Gnetales harbours both the rps3 introns. This intron distribution pattern is consistent with the hypothesis that the two rps3 introns were likely present in the common ancestor of the seed plants and, then, independently lost in the non-Pinaceae during gymnosperm evolution. The derived secondary structural model of the novel group IIA intron improves our understanding of the significance and origin of the extraordinary length polymorphisms observed among rps3i249 orthologs. Despite the remarkable structural plasticity to adopt and reject introns, the rps3 mRNAs undergo accurate processing by splicing and extensive editing in gymnosperm mitochondria. This study provides additional insights into the evolutionarily high dynamics of mitochondrial introns which may come and go in closely related plant species. The turnover of the mitochondrial rps3 group II introns seen among lineages of seed plants further suggests that these introns might be an additional signature to discriminate between particularly cryptical taxonomic groups for which there is a need of a further evaluation of their evolutionary affiliation.


Assuntos
Cycadopsida/genética , Íntrons/genética , Proteínas Mitocondriais/genética , Proteínas de Plantas/genética , Proteínas Ribossômicas/genética , Sequência de Bases , Cycadopsida/classificação , DNA de Plantas/química , DNA de Plantas/genética , Evolução Molecular , Gnetum/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Pinaceae/classificação , Pinaceae/genética , Análise de Sequência de DNA
5.
J Mol Evol ; 60(2): 196-206, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15785848

RESUMO

Comparative analysis of the ribosomal protein S3 gene (rps3) in the mitochondrial genome of Cycas with newly sequenced counterparts from Magnolia and Helianthus and available sequences from higher plants revealed that the positional clustering with the genes for ribosomal protein S19 (rps19) and L16 (rpl16) is preserved in gymnosperms. However, in contrast to the other land plant species, the rps3 gene in Cycas mitochondria is unique in possessing a second intron: rps3i2. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of the transcripts generated from the rps19-rps3-rpl16 cluster in Cycas mitochondria demonstrated that the genes are cotranscribed and extensively modified by RNA editing and that both introns are efficiently spliced. Despite remarkable size heterogeneity, the Cycas rps3i1 can be shown to be homologous to the group IIA introns present within the rps3 gene of algae and land plants, including Magnolia and Helianthus. Conversely, sequences similar to the rps3i2 have not been reported previously. On the basis of conserved primary and secondary structure the second intervening sequence interrupting the Cycas rps3 gene has been classified as a group II intron. The close relationship of the rps3i2 to a group of different plant mitochondrial introns is intriguing and suggestive of a mitochondrial derivation for this novel intervening sequence. Interestingly, the rps3i2 appears to be conserved at the same gene location in other gymnosperms. Furthermore, the pattern of the rps3i2 distribution among algae and land plants provides evidence for the evolutionary acquisition of this novel intron in gymnosperms via intragenomic transposition or retrotransposition.


Assuntos
Cycas/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas Ribossômicas/genética , Sequência de Bases , DNA Mitocondrial/genética , DNA de Plantas/genética , Evolução Molecular , Genoma de Planta , Helianthus/genética , Íntrons , Magnolia/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa