Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Cell ; 154(5): 983-995, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23993092

RESUMO

DNA damage triggers polyubiquitylation and degradation of the largest subunit of RNA polymerase II (RNAPII), a "mechanism of last resort" employed during transcription stress. In yeast, this process is dependent on Def1 through a previously unresolved mechanism. Here, we report that Def1 becomes activated through ubiquitylation- and proteasome-dependent processing. Def1 processing results in the removal of a domain promoting cytoplasmic localization, resulting in nuclear accumulation of the clipped protein. Nuclear Def1 then binds RNAPII, utilizing a ubiquitin-binding domain to recruit the Elongin-Cullin E3 ligase complex via a ubiquitin-homology domain in the Ela1 protein. This facilitates polyubiquitylation of Rpb1, triggering its proteasome-mediated degradation. Together, these results outline the multistep mechanism of Rpb1 polyubiquitylation triggered by transcription stress and uncover the key role played by Def1 as a facilitator of Elongin-Cullin ubiquitin ligase function.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transcrição Gênica , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/química , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Estresse Fisiológico , Complexos Ubiquitina-Proteína Ligase/metabolismo
2.
Plant Cell Physiol ; 65(1): 107-119, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37874980

RESUMO

Symbioses with beneficial microbes are widespread in plants, but these relationships must balance the energy invested by the plants with the nutrients acquired. Symbiosis with arbuscular mycorrhizal (AM) fungi occurs throughout land plants, but our understanding of the genes and signals that regulate colonization levels is limited, especially in non-legumes. Here, we demonstrate that in tomato, two CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides, SlCLE10 and SlCLE11, act to suppress AM colonization of roots. Mutant studies and overexpression via hairy transformation indicate that SlCLE11 acts locally in the root to limit AM colonization. Indeed, SlCLE11 expression is strongly induced in AM-colonized roots, but SlCLE11 is not required for phosphate suppression of AM colonization. SlCLE11 requires the FIN gene that encodes an enzyme required for CLE peptide arabinosylation to suppress mycorrhizal colonization. However, SlCLE11 suppression of AM does not require two CLE receptors with roles in regulating AM colonization, SlFAB (CLAVATA1 ortholog) or SlCLV2. Indeed, multiple parallel pathways appear to suppress mycorrhizal colonization in tomato, as double mutant studies indicate that SlCLV2 and FIN have an additive influence on mycorrhizal colonization. SlCLE10 appears to play a more minor or redundant role, as cle10 mutants did not influence intraradical AM colonization. However, the fact that cle10 mutants had an elevated number of hyphopodia and that ectopic overexpression of SlCLE10 did suppress mycorrhizal colonization suggests that SlCLE10 may also play a role in suppressing AM colonization. Our findings show that CLE peptides regulate AM colonization in tomato and at least SlCLE11 likely requires arabinosylation for activity.


Assuntos
Micorrizas , Solanum lycopersicum , Micorrizas/fisiologia , Solanum lycopersicum/genética , Raízes de Plantas/metabolismo , Simbiose/genética , Peptídeos/metabolismo
3.
New Phytol ; 242(2): 626-640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396236

RESUMO

Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.


Assuntos
Giberelinas , Nodulação , Nodulação/fisiologia , Citocininas , Ácidos Indolacéticos/farmacologia , Pisum sativum/genética , Hormônios , Regulação da Expressão Gênica de Plantas , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 190(4): 2103-2114, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094356

RESUMO

Two hundred years after the birth of Gregor Mendel, it is an appropriate time to reflect on recent developments in the discipline of genetics, particularly advances relating to the prescient friar's model species, the garden pea (Pisum sativum L.). Mendel's study of seven characteristics established the laws of segregation and independent assortment. The genes underlying four of Mendel's loci (A, LE, I, and R) have been characterized at the molecular level for over a decade. However, the three remaining genes, influencing pod color (GP), pod form (V/P), and the position of flowers (FA/FAS), have remained elusive for a variety of reasons, including a lack of detail regarding the loci with which Mendel worked. Here, we discuss potential candidate genes for these characteristics, in light of recent advances in the genetic resources for pea. These advances, including the pea genome sequence and reverse-genetics techniques, have revitalized pea as an excellent model species for physiological-genetic studies. We also discuss the issues that have been raised with Mendel's results, such as the recent controversy regarding the discrete nature of the characters that Mendel chose and the perceived overly-good fit of his segregations to his hypotheses. We also consider the relevance of these controversies to his lasting contribution. Finally, we discuss the use of Mendel's classical results to teach and enthuse future generations of geneticists, not only regarding the core principles of the discipline, but also its history and the role of hypothesis testing.


Assuntos
Flores , Pisum sativum , Pisum sativum/genética , Flores/genética
5.
J Appl Res Intellect Disabil ; 36(3): 429-447, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36797039

RESUMO

BACKGROUND: Dysphagia can have serious health implications including choking and respiratory infection leading to poorer quality of life. People with intellectual disabilities are at higher risk of dysphagia related health complications and early death. Robust dysphagia screening tools are vital for this population. METHOD: A scoping review and appraisal of the evidence for dysphagia and feeding screening tools for use with people with intellectual disabilities was undertaken. RESULTS: Seven studies (using six screening tools) met the review inclusion criteria. Mostly studies were limited by no defined dysphagia criteria, no verification of tools with a gold reference standard (e.g., videofluoroscopic examination) and lack of participant diversity (small samples, narrow age range, severity of intellectual disability or limited settings). CONCLUSIONS: There is urgent need for development and rigorous appraisal of existing dysphagia screening tools to meet the needs of a wider range of people with intellectual disabilities (particularly mild-to-moderate severity) and in wider settings.


Assuntos
Transtornos de Deglutição , Deficiência Intelectual , Humanos , Deficiência Intelectual/epidemiologia , Qualidade de Vida , Transtornos de Deglutição/diagnóstico , Transtornos de Deglutição/epidemiologia
6.
Mol Biol Evol ; 37(11): 3094-3104, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521019

RESUMO

The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.


Assuntos
Evolução Biológica , Transferência Genética Horizontal , Fosfoenolpiruvato Carboxilase/genética , Fotossíntese/genética , Poaceae/genética , Substituição de Aminoácidos , Poaceae/enzimologia
7.
J Exp Bot ; 72(5): 1702-1713, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33186449

RESUMO

Plants form mutualistic nutrient-acquiring symbioses with microbes, including arbuscular mycorrhizal fungi. The formation of these symbioses is costly, and plants employ a negative feedback loop termed autoregulation of mycorrhizae (AOM) to limit formation of arbuscular mycorrhizae (AM). We provide evidence for the role of one leucine-rich repeat receptor-like kinase (FAB), a hydroxyproline O-arabinosyltransferase enzyme (FIN), and additional evidence for one receptor-like protein (SlCLV2) in the negative regulation of AM formation in tomato. Reciprocal grafting experiments suggest that the FAB gene acts locally in the root, while the SlCLV2 gene may act in both the root and the shoot. External nutrients including phosphate and nitrate can also strongly suppress AM formation. We found that FAB and FIN are required for nitrate suppression of AM but are not required for the powerful suppression of AM colonization by phosphate. This parallels some of the roles of legume homologues in the autoregulation of the more recently evolved symbioses with nitrogen-fixing bacteria leading to nodulation. This deep homology in the symbiotic role of these genes suggests that in addition to the early signalling events that lead to the establishment of AM and nodulation, the autoregulation pathway might also be considered part of the common symbiotic toolkit that enabled plants to form beneficial symbioses.


Assuntos
Fabaceae , Micorrizas , Solanum lycopersicum , Solanum lycopersicum/genética , Nitrogênio , Raízes de Plantas , Simbiose
8.
J Mater Sci Mater Med ; 32(10): 131, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34625853

RESUMO

Bypass grafting is a technique used in the treatment of vascular disease, which is currently the leading cause of mortality worldwide. While technology has moved forward over the years, synthetic grafts still show significantly lower rates of patency in small diameter bypass operations compared to the gold standard (autologous vessel grafts). Scaffold morphology plays an important role in vascular smooth muscle cell (VSMC) performance, with studies showing how fibre alignment and surface roughness can modulate phenotypic and genotypic changes. Herein, this study has looked at how the fibre diameter of electrospun polymer scaffolds can affect the performance of seeded VSMCs. Four different scaffolds were electrospun with increasing fibre sizes ranging from 0.75 to 6 µm. Culturing VSMCs on the smallest fibre diameter (0.75 µm) lead to a significant increase in cell viability after 12 days of culture. Furthermore, interesting trends were noted in the expression of two key phenotypic genes associated with mature smooth muscle cell contractility (myocardin and smooth muscle alpha-actin 1), whereby reducing the fibre diameter lead to relative upregulations compared to the larger fibre diameters. These results showed that the smallest (0.75 µm) fibre diameter may be best suited for the culture of VSMCs with the aim of increasing cell proliferation and aiding cell maturity.


Assuntos
Prótese Vascular , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Nanofibras , Alicerces Teciduais/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Galvanoplastia , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Humanos , Teste de Materiais , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Nanofibras/química , Tamanho da Partícula , Poliésteres/química , Poliésteres/farmacologia , Porosidade
9.
Planta ; 252(4): 70, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32995943

RESUMO

MAIN CONCLUSION: A comprehensive analysis of the role of brassinosteroids in nodulation, including their interactions with auxin and ethylene revealed that brassinosteroids inhibit infection, promote nodule initiation but do not influence nodule organogenesis or function. Nodulation, the symbiosis between legumes and rhizobial bacteria, is regulated by a suite of hormones including brassinosteroids. Previous studies have found that brassinosteroids promote nodule number by inhibiting ethylene biosynthesis. In this study, we examined the influence of brassinosteroids on the various stages of infection and nodule development. We utilise pea mutants, including brassinosteroid mutants lk, lka and lkb, the ethylene insensitive ein2 mutant and the lk ein2 double mutant, along with transgenic lines expressing the DR5::GUS auxin activity marker to investigate how brassinosteroids interact with ethylene and auxin during nodulation. We show that brassinosteroids inhibit the early stages of nodulation, including auxin accumulation, root hair deformation and infection thread formation, and demonstrate that infection thread formation is regulated by brassinosteroids in an ethylene independent manner. In contrast, brassinosteroids appear to act as promoters of nodule initiation through both an ethylene dependent and independent pathway. Although brassinosteroids positively influence the ultimate number of nodules formed, we found that brassinosteroid-deficiency did not influence nodule structure including the vascular pattern of auxin activity or nitrogen-fixation capacity. These findings suggest that brassinosteroids are negative regulators of infection but positive regulators of nodule initiation. Furthermore, brassinosteroids do not appear to be essential for nodule organogenesis or function. Given the influence of brassinosteroids on discreet stages of nodulation but not nodule function, manipulation of brassinosteroids may be an interesting avenue for future research on the optimisation of nodulation.


Assuntos
Brassinosteroides , Etilenos , Ácidos Indolacéticos , Pisum sativum , Nodulação , Brassinosteroides/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Nodulação/fisiologia , Simbiose
10.
Physiol Plant ; 170(4): 607-621, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32880978

RESUMO

Plants use a variety of signals to control root development, including in modifying root development in response to nutrient stress. For example, in response to nitrogen (N) stress, plants dramatically modulate root development, including the formation of N-fixing nodules in legumes. Recently, specific CLE peptides and/or receptors important for their perception, including CLV1 and CLV2, have been found to play roles in root development, including in response to N supply. In the legume Medicago truncatula, this response also appears to be influenced by RDN1, a member of the hydroxyproline-O-arabinosyltransferase (HPAT) family which can modify specific CLE peptides. However, it is not known if this signalling pathway plays a central role in root development across species, and in particular root responses to N. In this study, we systematically examined the role of the CLV signalling pathway genes in root development of the legume pea (Pisum sativum) and non-legume tomato (Solanum lycopersicum) using a mutant-based approach. This included a detailed examination of root development in response to N in tomato mutants disrupted in CLV1- or CLV2-like genes or HPAT family member FIN. We found no evidence for a role of these genes in pea seedling root development. Furthermore, the CLV1-like FAB gene did not influence tomato root development, including the root response to N supply. In contrast, both CLV2 and the HPAT gene FIN appear to positively influence root size in tomato but do not mediate root responses to N. These results suggest the function of these genes may vary somewhat in different species, including the N regulation of root architecture.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Hidroxiprolina , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitrogênio , Pentosiltransferases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Physiol Plant ; 170(1): 132-147, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32385889

RESUMO

The underlying mechanisms that determine whether two species can form a successful graft union (graft compatibility) remain obscure. Two prominent hypotheses are (1) the more closely related species are, the higher the graft success and (2) the vascular anatomy at the graft junction influences graft success. In this paper these two hypotheses are examined in a systematic way using graft combinations selected from a range of (a) phylogenetically close and more distant legume species, (b) species displaying different germination patterns and (c) scions and rootstocks possessing contrasting stem tissues and vascular patterns. Relatedness of species was not a good predictor of graft compatibility, as vascular reconnection can occur between distantly related species and can fail to occur in some more closely related species. Similarly, neither the stem tissues present at the graft junction nor the vascular anatomy correlated with the success of vascular reconnection. Relatedness and stem anatomy therefore do not appear to be the determining factors in successful vascular reconnection after grafting in legumes. These results are discussed in conjunction with other hypotheses such as the role of auxin.


Assuntos
Ácidos Indolacéticos , Filogenia
12.
J Asthma ; 57(7): 799-809, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31066318

RESUMO

Objective: Asthma is a risk factor for poor early reading in children, for reasons that are unclear. This analysis examines the relationship between changes in asthma severity during the first year of school and being in the lowest quartile of reading achievement after 1 year of school.Methods: We used previously unreported data from our cohort study. Parent interviews and teacher questionnaires enquired about asthma and covariates of achievement at school entry (T1) and 12 months later (T2). Asthma severity scores at T1 and T2 showed that in 27 of 51 children with asthma, symptoms improved over the year, whereas in 24, symptoms persisted or worsened. Word and story reading were assessed at T1 and T2. We compared reading achievement at both timepoints between children with asthma and children who had no reported respiratory symptoms between birth and T2 (controls, N = 74), and between those with persistent versus improved symptoms.Results: More children with asthma than controls were in the lowest quartiles for reading. Further, significantly more children in the persistent group compared to the improved group were in the lowest quartiles for word reading (58 versus 30%, respectively) and story reading (54 versus 26%, respectively). School absences, increased behavior problems, stressful life events or parental mental health were not associated with the differences in either comparison. Logistic regression modeling identified persistent asthma as the most important variable associated with being in the lowest quartile of reading after 1 year in school.Conclusions: Active asthma symptoms during early school may influence early reading achievement.


Assuntos
Asma/diagnóstico , Avaliação Educacional/estatística & dados numéricos , Aprendizagem/fisiologia , Leitura , Instituições Acadêmicas/estatística & dados numéricos , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Nova Zelândia , Índice de Gravidade de Doença
13.
Biochem J ; 476(13): 1875-1887, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31164400

RESUMO

Magnesium chelatase initiates chlorophyll biosynthesis, catalysing the MgATP2--dependent insertion of a Mg2+ ion into protoporphyrin IX. The catalytic core of this large enzyme complex consists of three subunits: Bch/ChlI, Bch/ChlD and Bch/ChlH (in bacteriochlorophyll and chlorophyll producing species, respectively). The D and I subunits are members of the AAA+ (ATPases associated with various cellular activities) superfamily of enzymes, and they form a complex that binds to H, the site of metal ion insertion. In order to investigate the physical coupling between ChlID and ChlH in vivo and in vitro, ChlD was FLAG-tagged in the cyanobacterium Synechocystis sp. PCC 6803 and co-immunoprecipitation experiments showed interactions with both ChlI and ChlH. Co-production of recombinant ChlD and ChlH in Escherichia coli yielded a ChlDH complex. Quantitative analysis using microscale thermophoresis showed magnesium-dependent binding (Kd 331 ± 58 nM) between ChlD and H. The physical basis for a ChlD-H interaction was investigated using chemical cross-linking coupled with mass spectrometry (XL-MS), together with modifications that either truncate ChlD or modify single residues. We found that the C-terminal integrin I domain of ChlD governs association with ChlH, the Mg2+ dependence of which also mediates the cooperative response of the Synechocystis chelatase to magnesium. The interaction site between the AAA+ motor and the chelatase domain of magnesium chelatase will be essential for understanding how free energy from the hydrolysis of ATP on the AAA+ ChlI subunit is transmitted via the bridging subunit ChlD to the active site on ChlH.


Assuntos
Liases/química , Magnésio/química , Proteínas Recombinantes/química , Synechocystis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Liases/genética , Domínios Proteicos , Proteínas Recombinantes/genética , Synechocystis/genética
14.
Ann Bot ; 123(3): 429-439, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30380009

RESUMO

BACKGROUND: The presence of a polar auxin transport stream has long been correlated with the differentiation and patterning of vascular cells across vascular plants. As our understanding of auxin transport and vascular development has grown, so too has evidence for the correlation between these processes. However, a clear understanding of the cellular and molecular mechanisms driving this correlation has not been elucidated. SCOPE: This article examines the hypothesis that canalization via polar auxin transport regulates vascular reconnection and patterning in the stem after wounding or grafting. We examine the evidence for the causal nature of the relationship and the suggested role that other hormones may play. Data are presented indicating that in grafted plants the degree of auxin transport may not always correlate with vascular reconnection. Furthermore, data on grafting success using plants with a range of hormone-related mutations indicate that these hormones may not be critical for vascular reconnection. CONCLUSIONS: In the past, excellent work examining elements of auxin synthesis, transport and response in relation to vascular development has been carried out. However, new experimental approaches are required to test more directly the hypothesis that auxin transport regulates stem vascular reconnection after wounding or grafting. This could include studies on the timing of the re-establishment of auxin transport and vascular reconnection after grafting and the influence of auxin transport mutants and inhibitors on these processes using live imaging.


Assuntos
Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/fisiologia , Transporte Biológico
15.
Plant Physiol ; 175(1): 529-542, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28751316

RESUMO

Strigolactones (SLs) influence the ability of legumes to associate with nitrogen-fixing bacteria. In this study, we determine the precise stage at which SLs influence nodulation. We show that SLs promote infection thread formation, as a null SL-deficient pea (Pisum sativum) mutant forms significantly fewer infection threads than wild-type plants, and this reduction can be overcome by the application of the synthetic SL GR24. We found no evidence that SLs influence physical events in the plant before or after infection thread formation, since SL-deficient plants displayed a similar ability to induce root hair curling in response to rhizobia or Nod lipochitooligosaccharides (LCOs) and SL-deficient nodules appear to fix nitrogen at a similar rate to those of wild-type plants. In contrast, an SL receptor mutant displayed no decrease in infection thread formation or nodule number, suggesting that SL deficiency may influence the bacterial partner. We found that this influence of SL deficiency was not due to altered flavonoid exudation or the ability of root exudates to stimulate bacterial growth. The influence of SL deficiency on infection thread formation was accompanied by reduced expression of some early nodulation genes. Importantly, SL synthesis is down-regulated by mutations in genes of the Nod LCO signaling pathway, and this requires the downstream transcription factor NSP2 but not NIN This, together with the fact that the expression of certain SL biosynthesis genes can be elevated in response to rhizobia/Nod LCOs, suggests that Nod LCOs may induce SL biosynthesis. SLs appear to influence nodulation independently of ethylene action, as SL-deficient and ethylene-insensitive double mutant plants display essentially additive phenotypes, and we found no evidence that SLs influence ethylene synthesis or vice versa.


Assuntos
Lactonas/farmacologia , Pisum sativum/fisiologia , Rhizobium/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação para Baixo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Lactonas/metabolismo , Lipopolissacarídeos/farmacologia , Mutação , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Pisum sativum/microbiologia , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Simbiose/efeitos dos fármacos , Fatores de Transcrição/genética
16.
J Exp Bot ; 69(8): 2117-2130, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29432555

RESUMO

Leguminous plant roots can form a symbiosis with soil-dwelling nitrogen-fixing rhizobia, leading to the formation of a new root organ, the nodule. Successful nodulation requires co-ordination of spatially separated events in the root, including infection in the root epidermis and nodule organogenesis deep in the root cortex. We show that the hormone gibberellin plays distinct roles in these epidermal and cortical programmes. We employed a unique set of genetic material in pea that includes severely gibberellin-deficient lines and della-deficient lines that enabled us to characterize all stages of infection and nodule development. We confirmed that gibberellin suppresses infection thread formation and show that it also promotes nodule organogenesis into nitrogen-fixing organs. In both cases, this is achieved through the action of DELLA proteins. This study therefore provides a mechanism to explain how both low and high gibberellin signalling can result in reduced nodule number and reveals a clear role for gibberellin in the maturation of nodules into nitrogen-fixing organs. We also demonstrate that gibberellin acts independently of ethylene in promoting nodule development.


Assuntos
Giberelinas/metabolismo , Pisum sativum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose
17.
Biomacromolecules ; 19(2): 616-625, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283562

RESUMO

Cyclic polymers with internal constraints provide new insight into polymer properties in solution and bulk and can serve as a model system to explain the stability and mobility of cyclic biomacromolecules. The model system used in this work consisted of cyclic polystyrene structures, all with a nearly identical molecular weight, designed with 0-3 constraints located at strategic sites within the cyclic polymer, with either 4 or 6 branch points. The total number of branch points (or arms) within the cyclic ranged from 0 to 18. Molecular dynamic (MD) simulations showed that as the number of arms increased within the cyclic structure, the radius of gyration and the hydrodynamic radius generally decreased, suggesting the greater number of constraints resulted in a more compact polymer chain. The simulations further showed that the excluded volume was much greater for the cyclics compared to a linear polymer at the same molecular weight. The spirocyclic, a structure consisting of three rings joined in series, showed significant excluded volume effects in agreement with experimental data; the reason for which is unclear at this stage. Interestingly, under a size exclusion chromatography flow, the radius of hydration for all the cyclic structures increased compared with the DLS data, and could be explained from the greater swelling of the rings perpendicular to the flow found from previous simulations on rings. This data suggests that the greater compactness, greater excluded volume and structural rearrangements under flow of constrained cyclic polymers could be used to provide a physical basis for understanding greater stability and activity of cyclic biological macromolecules.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Estrutura Molecular
18.
Biochem J ; 474(20): 3513-3522, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28864672

RESUMO

The majority of characterised ferrochelatase enzymes catalyse the final step of classical haem synthesis, inserting ferrous iron into protoporphyrin IX. However, for the recently discovered coproporphyrin-dependent pathway, ferrochelatase catalyses the penultimate reaction where ferrous iron is inserted into coproporphyrin III. Ferrochelatase enzymes from the bacterial phyla Firmicutes and Actinobacteria have previously been shown to insert iron into coproporphyrin, and those from Bacillus subtilis and Staphylococcus aureus are known to be inhibited by elevated iron concentrations. The work herein reports a Km (coproporphyrin III) for S. aureus ferrochelatase of 1.5 µM and it is shown that elevating the iron concentration increases the Km for coproporphyrin III, providing a potential explanation for the observed iron-mediated substrate inhibition. Together, structural modelling, site-directed mutagenesis, and kinetic analyses confirm residue Glu271 as being essential for the binding of iron to the inhibitory regulatory site on S. aureus ferrochelatase, providing a molecular explanation for the observed substrate inhibition patterns. This work therefore has implications for how haem biosynthesis in S. aureus is regulated by iron availability.


Assuntos
Coproporfirinas/metabolismo , Ferroquelatase/metabolismo , Ferro/metabolismo , Staphylococcus aureus/enzimologia , Sítios de Ligação/fisiologia , Coproporfirinas/química , Ferroquelatase/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Age Ageing ; 46(3): 359-365, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932357

RESUMO

Evidence based medicine tells us that we should not accept published research at face value. Even research from established teams published in the highest impact journals can have methodological flaws, biases and limited generalisability. The critical appraisal of research studies can seem daunting, but tools are available to make the process easier for the non-specialist. Understanding the language and process of quality assessment is essential when considering or conducting research, and is also valuable for all clinicians who use published research to inform their clinical practice.We present a review written specifically for the practising geriatrician. This considers how quality is defined in relation to the methodological conduct and reporting of research. Having established why quality assessment is important, we present and critique tools which are available to standardise quality assessment. We consider five study designs: RCTs, non-randomised studies, observational studies, systematic reviews and diagnostic test accuracy studies. Quality assessment for each of these study designs is illustrated with an example of published cognitive research. The practical applications of the tools are highlighted, with guidance on their strengths and limitations. We signpost educational resources and offer specific advice for use of these tools.We hope that all geriatricians become comfortable with critical appraisal of published research and that use of the tools described in this review - along with awareness of their strengths and limitations - become a part of teaching, journal clubs and practice.


Assuntos
Pesquisa Biomédica/normas , Confiabilidade dos Dados , Medicina Baseada em Evidências/normas , Geriatria/normas , Indicadores de Qualidade em Assistência à Saúde/normas , Projetos de Pesquisa/normas , Pesquisa Biomédica/métodos , Geriatria/métodos , Humanos , Guias de Prática Clínica como Assunto/normas , Controle de Qualidade
20.
Rural Remote Health ; 17(1): 4047, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28274125

RESUMO

Targeted postgraduate training increases the likelihood young doctors will take up careers in rural generalist medicine. This article describes the postgraduate pathways that have evolved for these doctors in New Zealand. The Cairns consensus statement 2014 defined rural medical generalism as a scope of practice that encompasses primary care, hospital or secondary care, emergency care, advanced skill sets and a population-based approach to the health needs of rural communities. Even as work goes on to define this role different jurisdictions have developed their own training pathways for these important members of the rural healthcare workforce. In 2002 the University of Otago developed a distance-taught postgraduate diploma aimed at the extended practice of rural general practitioners (GPs) and rural hospital medical officers. This qualification has evolved into a 4-year vocational training program in rural hospital medicine, with the university diploma retained as the academic component. The intentionally flexible and modular nature of the rural hospital training program and university diploma allow for a range of training options. The majority of trainees are taking advantage of this by combining general practice and rural hospital training. Although structured quite differently the components of this combined pathway looks similar to the Australian rural generalist pathways. There is evidence that the program has had a positive impact on the New Zealand rural hospital medical workforce.


Assuntos
Medicina Geral/educação , Clínicos Gerais/educação , Serviços de Saúde Rural , População Rural , Atitude do Pessoal de Saúde , Escolha da Profissão , Feminino , Humanos , Masculino , Nova Zelândia , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa