Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Blood ; 139(4): 584-596, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34525179

RESUMO

Acute myeloid leukemia (AML) is characterized by the presence of leukemia stem cells (LSCs), and failure to fully eradicate this population contributes to disease persistence/relapse. Prior studies have characterized metabolic vulnerabilities of LSCs, which demonstrate preferential reliance on oxidative phosphorylation (OXPHOS) for energy metabolism and survival. In the present study, using both genetic and pharmacologic strategies in primary human AML specimens, we show that signal transducer and activator of transcription 3 (STAT3) mediates OXPHOS in LSCs. STAT3 regulates AML-specific expression of MYC, which in turn controls transcription of the neutral amino acid transporter gene SLC1A5. We show that genetic inhibition of MYC or SLC1A5 acts to phenocopy the impairment of OXPHOS observed with STAT3 inhibition, thereby establishing this axis as a regulatory mechanism linking STAT3 to energy metabolism. Inhibition of SLC1A5 reduces intracellular levels of glutamine, glutathione, and multiple tricarboxylic acid (TCA) cycle metabolites, leading to reduced TCA cycle activity and inhibition of OXPHOS. Based on these findings, we used a novel small molecule STAT3 inhibitor, which binds STAT3 and disrupts STAT3-DNA, to evaluate the biological role of STAT3. We show that STAT3 inhibition selectively leads to cell death in AML stem and progenitor cells derived from newly diagnosed patients and patients who have experienced relapse while sparing normal hematopoietic cells. Together, these findings establish a STAT3-mediated mechanism that controls energy metabolism and survival in primitive AML cells.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sobrevivência Celular , Humanos , Células-Tronco Neoplásicas/citologia , Fosforilação Oxidativa , Células Tumorais Cultivadas
2.
Molecules ; 28(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836643

RESUMO

Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) were previously shown to have selective positive modulation at the metabotropic glutamate receptor (mGluR) Subtypes 2 and 4, with no functional cross-reactivity at mGluR1a, mGluR5, or mGluR8. Additional analogs were prepared to access more of the allosteric pocket and achieve higher binding affinity, as suggested by homology modeling. Two different sets of analogs were generated. One uses the fully formed [3,4-d] with an N6-aryl with and without halogens. These underwent successful selective lateral metalation and electrophilic quenching (LM&EQ) at the C3 of the isoxazole. In a second set of analogs, a phenyl group was introduced at the C4 position of the [3,4-d] ring via a condensation of 4-phenylacetyl-3-ethoxcarbonyl-5-methyl isoxazole with the corresponding hydrazine to generate the 3,4-ds 2b and 2j to 2n.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Regulação Alostérica , Benzamidas , Isoxazóis/farmacologia
3.
Bioorg Med Chem ; 69: 116911, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792402

RESUMO

A series of 10-alkoxy-Anthryl-isoxazole-pyrrole-doubletails (RO-AIMs) were synthesized using a crown ether assisted nucleophilic aromatic substitution followed by a modified Schotten-Baumann reaction. The novel RO-AIMs described here exhibit robust growth inhibition for the human SNB19 CNS glioblastoma cell line, and biphenyl analog 8c had activity in the nanomolar regime, which represents the most efficacious compound in the AIM series to date. Computational modeling for RO-AIMs binding in a ternary complex with c-myc quadruplex DNA and its helicase DHX36 is presented which represents our current working hypothesis.


Assuntos
Quadruplex G , Glioblastoma , Álcoois , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Isoxazóis
4.
Mol Carcinog ; 60(3): 201-212, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33595872

RESUMO

Mutations in the BRAF gene are highly prevalent in thyroid cancer. However, the response rate of thyroid tumors to BRAF-directed therapies has been mixed. Increasingly, combination therapies inhibiting the MAPK pathway at multiple nodes have shown promise. Recently developed ERK1/2 inhibitors are of interest for use in combination therapies as they have the advantage of inhibiting the most downstream node of the MAPK pathway, therefore preventing pathway reactivation. Here, we examined the effect of combined BRAF inhibition (dabrafenib) and ERK1/2 inhibition (SCH772984) on the growth and survival of a panel of BRAF-mutant thyroid cancer cell lines using in vitro and in vivo approaches. We found that resistance due to MAPK pathway reactivation occurs quickly with single-agent BRAF inhibition, but can be prevented with combined BRAF and ERK1/2 inhibition. Combined inhibition also results in synergistic growth inhibition, decreased clonogenic survival, and enhanced induction of apoptosis in a subset of BRAF-mutant thyroid cancer cells. Finally, combined inhibition of BRAF and ERK1/2 results in enhanced inhibition of tumor growth in an anaplastic thyroid cancer in vivo model. These results provide key rationale to pursue combined BRAF and ERK1/2 inhibition as an alternative therapeutic strategy for BRAF-mutant advanced thyroid cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Indazóis/administração & dosagem , Indazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Nus , Mutação , Oximas/administração & dosagem , Oximas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Bioorg Med Chem ; 41: 116220, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34034149

RESUMO

The RSK2 kinase is the downstream effector of the Ras/Raf/MEK/ERK pathway, that is often aberrantly activated in acute myeloid leukemia (AML). Recently, we reported a structure-activity study for BI-D1870, the pan-RSK inhibitor, and identified pteridinones that inhibited cellular RSK2 activity that did not result in concomitant cytotoxicity. In the current study, we developed a series of pyrrolopyrimidines and purines to replace the pteridinone ring of BI-D1870, with a range of N-substituents that extend to the substrate binding site to probe complementary interactions, while retaining the 2,6-difluorophenol-4-amino group to maintain interactions with the hinge domain and the DFG motif. Several compounds inhibited cellular RSK2 activity, and we identified compounds that uncoupled cellular RSK2 inhibition from potent cytotoxicity in the MOLM-13 AML cell line. These N-substituted probes have revealed an opportunity to further examine substituents that extend from the ATP- to the substrate-binding site may confer improved RSK potency and selectivity.


Assuntos
Inibidores Enzimáticos/farmacologia , Purinas/química , Purinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
6.
Bioorg Med Chem ; 28(5): 115303, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982240

RESUMO

The activity of p90 ribosomal S6 kinase 2 (RSK2) has emerged as an attractive target for cancer therapy due to its role in the regulation of diverse cellular processes, such as cell transformation and proliferation. Several pan-RSK inhibitors have been identified with BI-D1870 and the pseudo-analogs LJH685 and LJI308 being the most selective, potent, and frequently used small molecule inhibitors. We designed and synthesized a series of pteridinones and pyrimidines to evaluate the structural features of BI-D1870 that are required for RSK2 inhibition. We have identified inhibitors of RSK2 activity, evaluated their target engagement in cells, and measured their effect on cell viability and cytotoxicity in the MOLM-13 acute myeloid leukemia (AML) cell line. The results of our studies support that RSK2 inhibition can be achieved in MOLM-13 cells without potent cytotoxicity. The structure-activity data from this study will be used as a platform to develop novel RSK2 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pteridinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pteridinas/síntese química , Pteridinas/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 28(22): 115781, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038788

RESUMO

A novel series of anthracenyl-isoxazole amide (AIM) antitumor agents containing N-heterocycles in the 10 position (N-het) were synthesized using palladium cross-coupling. The unique steric environment of the N-het-AIMs required individual optimization in each case. Lanthanide mediated double activation was used to couple the dimethylamino pyrrole moiety, required for antitumor action. Robust antitumor activity was observed against breast and brain cancer cell lines. The compounds were docked with the c-myc oncogene promoter sequence, which adopts a G4 quadruplex DNA conformation, and represents the working hypothesis for biological action. The N-het-AIMs have useful fluorescence properties, allowing for observation of their distribution within tumor cells.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Fluorescência , Compostos Heterocíclicos/farmacologia , Isoxazóis/farmacologia , Amidas/síntese química , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172164

RESUMO

Lipoprotein lipase (LPL) is a key enzyme in lipid and lipoprotein metabolism. The canonical role of LPL involves the hydrolysis of triglyceride-rich lipoproteins for the provision of FFAs to metabolic tissues. However, LPL may also contribute to lipoprotein uptake by acting as a molecular bridge between lipoproteins and cell surface receptors. Recent studies have shown that LPL is abundantly expressed in the brain and predominantly expressed in the macrophages and microglia of the human and murine brain. Moreover, recent findings suggest that LPL plays a direct role in microglial function, metabolism, and phagocytosis of extracellular factors such as amyloid- beta (Aß). Although the precise function of LPL in the brain remains to be determined, several studies have implicated LPL variants in Alzheimer's disease (AD) risk. For example, while mutations shown to have a deleterious effect on LPL function and expression (e.g., N291S, HindIII, and PvuII) have been associated with increased AD risk, a mutation associated with increased bridging function (S447X) may be protective against AD. Recent studies have also shown that genetic variants in endogenous LPL activators (ApoC-II) and inhibitors (ApoC-III) can increase and decrease AD risk, respectively, consistent with the notion that LPL may play a protective role in AD pathogenesis. Here, we review recent advances in our understanding of LPL structure and function, which largely point to a protective role of functional LPL in AD neuropathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Animais , Humanos , Lipase Lipoproteica/fisiologia , Lipoproteínas/genética , Macrófagos , Camundongos , Microglia , Mutação , Relação Estrutura-Atividade , Triglicerídeos/genética
9.
Bioorg Med Chem ; 26(17): 4797-4803, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30143366

RESUMO

Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) are selective positive modulators of the metabotropic glutamate receptors (mGluRs) subtypes 2 and 4, with no functional cross reactivity at mGluR1a, mGLuR5 or mGluR8. Modest binding for two of the [3,4-d]s is observed at the allosteric fenobam mGluR5 site, but not sufficient to translate into a functional effect. The structure activity relationship (SAR) for mGluR2 and mGluR4 are distinct: the compounds which select for mGluR2 all contain fluorine on the N-6 aryl group. Furthermore, the [3,4-d]s in this study showed no significant binding at inhibitory GABAA, nor excitatory NMDA receptors, and previously we had disclosed that they lack significant activity at the System Xc-Antiporter. A homology model based on Conn's mGluR1 crystal structure was examined, and suggested explanations for a preference for allosteric over orthosteric binding, subtype selectivity, and suggested avenues for optimization of efficacy as a reasonable working hypothesis.


Assuntos
Isoxazóis/química , Piridazinas/química , Piridazinas/farmacologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Regulação Alostérica , Animais , Receptores de Glutamato Metabotrópico/química , Relação Estrutura-Atividade
10.
Bioorg Med Chem ; 25(12): 3223-3234, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28434782

RESUMO

A series of dimeric isoxazolyl-1,4-dihydropyridines (IDHPs) were prepared by click chemistry and examined for their ability to bind the multi-drug resistance transporter (MDR-1), a member of the ATP-binding cassette superfamily (ABC). Eight compounds in the present study exhibited single digit micromolar binding to this efflux transporter. One monomeric IDHP m-Br-1c, possessed submicromolar binding of 510nM at MDR-1. Three of the dimeric IDHPs possessed <1.5µM activity, and 4b and 4c were observed to have superior binding selectivity compared to their corresponding monomers verses the voltage gated calcium channel (VGCC). The dimer with the best combination of activity and selectivity for MDR-1 was analog 4c containing an m-Br phenyl moiety in the 3-position of the isoxazole, and a tether with five ethyleneoxy units, referred to herein as Isoxaquidar. Two important controls, mono-triazole 5 and pyridine 6, also were examined, indicating that the triazole - incorporated as part of the click assembly as a spacer - contributes to MDR-1 binding. Compounds were also assayed at the allosteric site of the mGluR5 receptor, as a GPCR 7TM control, indicating that the p-Br IDHPs 4d, 4e and 4f with tethers of from n=2 to 5 ethylenedioxy units, had sub-micromolar affinities with 4d being the most efficacious at 193nM at mGluR5. The results are interpreted using a docking study using a human ABC as our current working hypothesis, and suggest that the distinct SARs emerging for these three divergent classes of biomolecular targets may be tunable, and amenable to the development of further selectivity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Animais , Cristalografia por Raios X , Dimerização , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Isoxazóis/química , Isoxazóis/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica
11.
J Biol Chem ; 289(23): 16349-61, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24755226

RESUMO

Eya proteins are essential co-activators of the Six family of transcription factors and contain a unique tyrosine phosphatase domain belonging to the haloacid dehalogenase family of phosphatases. The phosphatase activity of Eya is important for the transcription of a subset of Six1-target genes, and also directs cells to the repair rather than apoptosis pathway upon DNA damage. Furthermore, Eya phosphatase activity has been shown to mediate transformation, invasion, migration, and metastasis of breast cancer cells, making it a potential new drug target for breast cancer. We have previously identified a class of N-arylidenebenzohydrazide compounds that specifically inhibit the Eya2 phosphatase. Herein, we demonstrate that these compounds are reversible inhibitors that selectively inhibit the phosphatase activity of Eya2, but not Eya3. Our mutagenesis results suggest that this class of compounds does not bind to the active site and the binding does not require the coordination with Mg(2+). Moreover, these compounds likely bind within a site on the opposite face of the active site, and function as allosteric inhibitors. We also demonstrate that this class of compounds inhibits Eya2 phosphatase-mediated cell migration, setting the foundation for these molecules to be developed into chemical probes for understanding the specific function of the Eya2 phosphatase and to serve as a prototype for the development of Eya2 phosphatase specific anti-cancer drugs.


Assuntos
Movimento Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Regulação Alostérica , Sequência de Aminoácidos , Calorimetria , Linhagem Celular , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Magnésio/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Ligação Proteica , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/fisiologia , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta
12.
IUBMB Life ; 67(5): 331-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25988524

RESUMO

The family of p90 ribosomal S6 kinases (RSKs) are pleiotropic effectors for extracellular signal-regulated kinase signaling pathways. Recently, RSK3 was shown to be important for pathological remodeling of the heart. Although cardiac myocyte hypertrophy can be compensatory for increased wall stress, in chronic heart diseases, this nonmitotic cell growth is usually associated with interstitial fibrosis, increased cell death, and decreased cardiac function. Although RSK3 is less abundant in the cardiac myocyte than other RSK family members, RSK3 appears to serve a unique role in cardiac myocyte stress responses. A potential mechanism conferring the unique function of RSK3 in the heart is anchoring by the scaffold protein muscle A-kinase anchoring protein ß (mAKAPß). Recent findings suggest that RSK3 should be considered as a therapeutic target for the prevention of heart failure, a clinical syndrome of major public health significance.


Assuntos
Miócitos Cardíacos/patologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Animais , Humanos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Estresse Fisiológico
13.
Pharm Res ; 32(5): 1648-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25413692

RESUMO

PURPOSE: To elucidate additional substrate specificities of ALDH1B1 and determine the effect that human ALDH1B1 polymorphisms will have on substrate specificity. METHODS: Computational-based molecular modeling was used to predict the binding of the substrates propionaldehyde, 4-hydroxynonenal, nitroglycerin, and all-trans retinaldehyde to ALDH1B1. Based on positive in silico results, the capacity of purified human recombinant ALDH1B1 to metabolize nitroglycerin and all-trans retinaldehyde was explored. Additionally, metabolism of 4-HNE by ALDH1B1 was revisited. Databases queried to find human polymorphisms of ALDH1B1 identified three major variants: ALDH1B1*2 (A86V), ALDH1B1*3 (L107R), and ALDH1B1*5 (M253V). Computational modeling was used to predict the binding of substrates and of cofactor (NAD(+)) to the variants. These human polymorphisms were created and expressed in a bacterial system and specific activity was determined. RESULTS: ALDH1B1 metabolizes (and appears to be inhibited by) nitroglycerin and has favorable kinetics for the metabolism of all-trans retinaldehyde. ALDH1B1 metabolizes 4-HNE with higher apparent affinity than previously described, but with low throughput. Recombinant ALDH1B1*2 is catalytically inactive, whereas both ALDH1B1*3 and ALDH1B1*5 are catalytically active. Modeling indicated that the lack of activity in ALDH1B1*2 is likely due to poor NAD(+) binding. Modeling also suggests that ALDH1B1*3 may be less able to metabolize all-trans retinaldehyde and that ALDH1B1*5 may bind NAD(+) poorly. CONCLUSIONS: ALDH1B1 metabolizes nitroglycerin and all-trans-retinaldehyde. One of the three human polymorphisms, ALDH1B1*2, is catalytically inactive, likely due to poor NAD(+) binding. Expression of this variant may affect ALDH1B1-dependent metabolic functions in stem cells and ethanol metabolism.


Assuntos
Acetaldeído/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Polimorfismo Genético , Retinaldeído/metabolismo , Aldeído Desidrogenase/química , Família Aldeído Desidrogenase 1 , Aldeído-Desidrogenase Mitocondrial , Aldeídos/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Nitroglicerina/metabolismo , Conformação Proteica , Especificidade por Substrato
14.
Bioorg Med Chem Lett ; 25(8): 1765-1770, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25782743

RESUMO

Using the structure-activity relationship emerging from previous Letter, and guided by pharmacokinetic properties, new AIMs have been prepared with both improved efficacy against human glioblastoma cells and cell permeability as determined by fluorescent confocal microscopy. We present our first unambiguous evidence for telomeric G4-forming oligonucleotide anisotropy by NMR resulting from direct interaction with AIMs, which is consistent with both our G4 melting studies by CD, and our working hypothesis. Finally, we show that AIMs induce apoptosis in SNB-19 cells.


Assuntos
Amidas/química , Antineoplásicos/química , Amidas/metabolismo , Amidas/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Sítios de Ligação , Linhagem Celular Tumoral , Dicroísmo Circular , Cristalografia por Raios X , Quadruplex G , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Telômero/química
15.
Mol Cancer ; 13: 72, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24661910

RESUMO

BACKGROUND: Medulloblastoma is the most common type of malignant brain tumor that afflicts children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients do poorly with significant morbidity. METHODS: To identify new molecular targets, we performed an integrated genomic analysis using structural and functional methods. Gene expression profiling in 16 medulloblastoma patient samples and subsequent gene set enrichment analysis indicated that cell cycle-related kinases were associated with disease development. In addition a kinome-wide small interfering RNA (siRNA) screen was performed to identify kinases that, when inhibited, could prevent cell proliferation. The two genome-scale analyses were combined to identify key vulnerabilities in medulloblastoma. The inhibition of one of the identified targets was further investigated using RNAi and a small molecule inhibitor. RESULTS: Combining the two analyses revealed that mitosis-related kinases were critical determinants of medulloblastoma cell proliferation. RNA interference (RNAi)-mediated knockdown of WEE1 kinase and other mitotic kinases was sufficient to reduce medulloblastoma cell proliferation. These data prompted us to examine the effects of inhibiting WEE1 by RNAi and by a small molecule inhibitor of WEE1, MK-1775, in medulloblastoma cell lines. MK-1775 inhibited the growth of medulloblastoma cell lines, induced apoptosis and increased DNA damage at nanomolar concentrations. Further, MK-1775 was synergistic with cisplatin in reducing medulloblastoma cell proliferation and resulted in an associated increase in cell death. In vivo MK-1775 suppressed medulloblastoma tumor growth as a single agent. CONCLUSIONS: Taken together, these findings highlight mitotic kinases and, in particular, WEE1 as a rational therapeutic target for medulloblastoma.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Meduloblastoma/genética , Terapia de Alvo Molecular , Proteínas Nucleares/biossíntese , Proteínas Tirosina Quinases/biossíntese , Apoptose/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pré-Escolar , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Genômica , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/genética , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinonas
16.
Neurotoxicology ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960072

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30mg/kg/day or 100mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.

17.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659796

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days, immediately followed by oral treatment with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.

18.
Structure ; 32(4): 400-410.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242118

RESUMO

Giardia lamblia is a deeply branching protist and a human pathogen. Its unusual biology presents the opportunity to explore conserved and fundamental molecular mechanisms. We determined the structure of the G. lamblia 80S ribosome bound to tRNA, mRNA, and the antibiotic emetine by cryo-electron microscopy, to an overall resolution of 2.49 Å. The structure reveals rapidly evolving protein and nucleotide regions, differences in the peptide exit tunnel, and likely altered ribosome quality control pathways. Examination of translation initiation factor binding sites suggests these interactions are conserved despite a divergent initiation mechanism. Highlighting the potential of G. lamblia to resolve conserved biological principles; our structure reveals the interactions of the translation inhibitor emetine with the ribosome and mRNA, thus providing insight into the mechanism of action for this widely used antibiotic. Our work defines key questions in G. lamblia and motivates future experiments to explore the diversity of eukaryotic gene regulation.


Assuntos
Giardia lamblia , Humanos , Giardia lamblia/genética , Giardia lamblia/química , Giardia lamblia/metabolismo , Emetina/farmacologia , Emetina/análise , Emetina/metabolismo , Microscopia Crioeletrônica , Ribossomos/química , RNA Mensageiro/metabolismo , Antibacterianos
19.
J Neurosci ; 32(33): 11250-8, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895709

RESUMO

Mitochondrial oxidative stress and damage have been implicated in the etiology of temporal lobe epilepsy, but whether or not they have a functional impact on mitochondrial processes during epilepsy development (epileptogenesis) is unknown. One consequence of increased steady-state mitochondrial reactive oxygen species levels is protein post-translational modification (PTM). We hypothesize that complex I (CI), a protein complex of the mitochondrial electron transport chain, is a target for oxidant-induced PTMs, such as carbonylation, leading to impaired function during epileptogenesis. The goal of this study was to determine whether oxidative modifications occur and what impact they have on CI enzymatic activity in the rat hippocampus in response to kainate (KA)-induced epileptogenesis. Rats were injected with a single high dose of KA or vehicle and evidence for CI modifications was measured during the acute, latent, and chronic stages of epilepsy. Mitochondrial-specific carbonylation was increased acutely (48 h) and chronically (6 week), coincident with decreased CI activity. Mass spectrometry analysis of immunocaptured CI identified specific metal catalyzed carbonylation to Arg76 within the 75 kDa subunit concomitant with inhibition of CI activity during epileptogenesis. Computational-based molecular modeling studies revealed that Arg76 is in close proximity to the active site of CI and carbonylation of the residue is predicted to induce substantial structural alterations to the protein complex. These data provide evidence for the occurrence of a specific and irreversible oxidative modification of an important mitochondrial enzyme complex critical for cellular bioenergetics during the process of epileptogenesis.


Assuntos
Encéfalo/ultraestrutura , Complexo I de Transporte de Elétrons/metabolismo , Estresse Oxidativo/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Estado Epiléptico/enzimologia , Estado Epiléptico/patologia , Análise de Variância , Animais , Arginina/metabolismo , Biotinilação , Encéfalo/patologia , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Masculino , Mitocôndrias/efeitos dos fármacos , Modelos Moleculares , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos , Mapeamento de Peptídeos , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/fisiologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estado Epiléptico/induzido quimicamente , Sinaptossomos/efeitos dos fármacos , Fatores de Tempo
20.
Mol Pharmacol ; 83(5): 1078-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23462506

RESUMO

Base amino acid lysine residues play an important role in regulation of nuclear receptors [e.g., farnesyl X receptor (FXR)], leading to enhanced or suppressed biologic activity. To understand the molecular mechanisms and the subsequent effects in modulating FXR functions in diverse biologic processes, we individually replaced eight highly conserved lysine residues of human FXR (hFXR) with arginine. The effects of each mutated FXR on target gene activation, subcellular localization, protein-protein association, and protein-DNA interaction were investigated. Results demonstrated that K122R, K210R, K339R, and K460R mutants of hFXR significantly impaired target gene [organic solute transporter α/ß and bile salt export pump (BSEP)] promoter reporter activity in a ligand-dependent fashion. None of the four mutants affected the nuclear localization of FXR. Protein interaction studies show that K210R slightly but significantly decreased FXR/retinoid X receptor (RXR) binding affinity but enhanced the interaction of FXR with lysine methyltransferase Set7/9 by ∼21%. K460R decreased the FXR interaction with Set7/9 by ∼45% but had no significant effects on interaction with RXR. Electrophoretic mobility shift assays demonstrated that hFXR-K210R and -K339R reduced the protein-DNA (IR1 element at hBSEP promoter) binding affinity by ∼80 and ∼90%, respectively. Computational-based protein modeling studies were consistent with these results and provided further insights into the potential underlying mechanisms responsible for these results. In conclusion, four highly conserved lysine residues of hFXR, K122, K210, K339, and K460, have been identified that play a critical role in FXR target gene regulation and molecular interaction (protein-protein and protein-DNA).


Assuntos
Lisina/genética , Lisina/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Arginina/genética , Arginina/metabolismo , Células CACO-2 , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ligantes , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Mutação/efeitos dos fármacos , Mutação/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Domínios e Motivos de Interação entre Proteínas/genética , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa