Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 612(7939): 252-258, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385531

RESUMO

Integrated femtosecond pulse and frequency comb sources are critical components for a wide range of applications, including optical atomic clocks1, microwave photonics2, spectroscopy3, optical wave synthesis4, frequency conversion5, communications6, lidar7, optical computing8 and astronomy9. The leading approaches for on-chip pulse generation rely on mode-locking inside microresonators with either third-order nonlinearity10 or with semiconductor gain11,12. These approaches, however, are limited in noise performance, wavelength and repetition rate tunability 10,13. Alternatively, subpicosecond pulses can be synthesized without mode-locking, by modulating a continuous-wave single-frequency laser using electro-optic modulators1,14-17. Here we demonstrate a chip-scale femtosecond pulse source implemented on an integrated lithium niobate photonic platform18, using cascaded low-loss electro-optic amplitude and phase modulators and chirped Bragg grating, forming a time-lens system19. The device is driven by a continuous-wave distributed feedback laser chip and controlled by a single continuous-wave microwave source without the need for any stabilization or locking. We measure femtosecond pulse trains (520-femtosecond duration) with a 30-gigahertz repetition rate, flat-top optical spectra with a 10-decibel optical bandwidth of 12.6 nanometres, individual comb-line powers above 0.1 milliwatts, and pulse energies of 0.54 picojoules. Our results represent a tunable, robust and low-cost integrated pulsed light source with continuous-wave-to-pulse conversion efficiencies an order of magnitude higher than those achieved with previous integrated sources. Our pulse generator may find applications in fields such as ultrafast optical measurement19,20 or networks of distributed quantum computers21,22.


Assuntos
Óxidos , Semicondutores , Olho , Micro-Ondas
2.
Nature ; 568(7752): 373-377, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858615

RESUMO

Optical frequency combs consist of equally spaced discrete optical frequency components and are essential tools for optical communication, precision metrology, timing and spectroscopy1-9. At present, combs with wide spectra are usually generated by mode-locked lasers10 or dispersion-engineered resonators with third-order Kerr nonlinearity11. An alternative method of comb production uses electro-optic (EO) phase modulation in a resonator with strong second-order nonlinearity, resulting in combs with excellent stability and controllability12-14. Previous EO combs, however, have been limited to narrow widths by a weak EO interaction strength and a lack of dispersion engineering in free-space systems. Here we overcome these limitations by realizing an integrated EO comb generator in a thin-film lithium niobate photonic platform that features a large EO response, ultralow optical loss and highly co-localized microwave and optical fields15, while enabling dispersion engineering. Our measured EO comb spans more frequencies than the entire telecommunications L-band (over 900 comb lines spaced about 10 gigahertz apart), and we show that future dispersion engineering can enable octave-spanning combs. Furthermore, we demonstrate the high tolerance of our comb generator to modulation frequency detuning, with frequency spacing finely controllable over seven orders of magnitude (10 hertz to 100 megahertz), and we use this feature to generate dual-frequency combs in a single resonator. Our results show that integrated EO comb generators are capable of generating wide and stable comb spectra. Their excellent reconfigurability is a powerful complement to integrated Kerr combs, enabling applications ranging from spectroscopy16 to optical communications8.

3.
Neurogenetics ; 25(2): 103-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383918

RESUMO

Epilepsy is a complex genetic disorder that affects about 2% of the global population. Although the frequency and severity of epileptic seizures can be reduced by a range of pharmacological interventions, there are no disease-modifying treatments for epilepsy. The development of new and more effective drugs is hindered by a lack of suitable animal models. Available rodent models may not recapitulate all key aspects of the disease. Spontaneous epileptic convulsions were observed in few Göttingen Minipigs (GMPs), which may provide a valuable alternative animal model for the characterisation of epilepsy-type diseases and for testing new treatments. We have characterised affected GMPs at the genome level and have taken advantage of primary fibroblast cultures to validate the functional impact of fixed genetic variants on the transcriptome level. We found numerous genes connected to calcium metabolism that have not been associated with epilepsy before, such as ADORA2B, CAMK1D, ITPKB, MCOLN2, MYLK, NFATC3, PDGFD, and PHKB. Our results have identified two transcription factor genes, EGR3 and HOXB6, as potential key regulators of CACNA1H, which was previously linked to epilepsy-type disorders in humans. Our findings provide the first set of conclusive results to support the use of affected subsets of GMPs as an alternative and more reliable model system to study human epilepsy. Further neurological and pharmacological validation of the suitability of GMPs as an epilepsy model is therefore warranted.


Assuntos
Modelos Animais de Doenças , Epilepsia , Fenótipo , Porco Miniatura , Animais , Suínos , Porco Miniatura/genética , Epilepsia/genética , Humanos , Convulsões/genética , Genômica/métodos , Transcriptoma , Fibroblastos/metabolismo
4.
Opt Lett ; 49(12): 3504-3507, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875656

RESUMO

Stable pulse and flat-top frequency comb generation are an indispensable component of many photonic applications, from ranging to communications. Lithium niobate on insulator is an excellent electro-optic (EO) platform, exhibiting high modulation efficiency and low optical loss, making it a fitting candidate for pulse generation through electro-optic modulation of continuous-wave (CW) light, a commonly utilized method for generating ultrashort pulses. Here, we demonstrate an on-chip electro-optic comb generation module on thin-film lithium niobate (TFLN) consisting of a Mach-Zehnder interferometer (MZI) amplitude modulator (AM) and a cascaded phase modulator (PM) system driven by a single-electrode drive. We show that when operated in the correct regime, the lithium niobate chips can generate frequency combs with excellent spectral power flatness. In addition, we optically package one of the pulse generator chips via photonic wire bonding. The pulses generated by the photonic-wire-bonded device are compressed to 840 fs pulse duration using an optical fiber and show extremely stable operation.

5.
Genet Sel Evol ; 55(1): 38, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291496

RESUMO

BACKGROUND: This paper highlights the relationships between economic weights, genetic progress, and phenotypic progress in genomic breeding programs that aim at generating genetic progress in complex, i.e., multi-trait, breeding objectives via a combination of estimated breeding values for different trait complexes. RESULTS: Based on classical selection index theory in combination with quantitative genetic models, we provide a methodological framework for calculating expected genetic and phenotypic progress for all components of a complex breeding objective. We further provide an approach to study the sensitivity of the system to modifications, e.g. to changes in the economic weights. We propose a novel approach to derive the covariance structure of the stochastic errors of estimated breeding values from the observed correlations of estimated breeding values. We define 'realized economic weights' as those weights that would coincide with the observed composition of the genetic trend and show, how they can be calculated. The suggested methodology is illustrated with an index that aims at achieving a breeding goal composed of six trait complexes, that was applied in German Holstein cattle breeding until 2021. CONCLUSIONS: Based on the presented results, the main conclusions are (i) the composition of the observed genetic progress matches the expectations well, with predictions being slightly better when the covariance of estimation errors is taken into account; (ii) the composition of the expected phenotypic trend deviates significantly from the expected genetic trend due to the differences in trait heritabilities; and (iii) the realized economic weights derived from the observed genetic trend deviate substantially from the predefined ones, in one case even with a reversed sign. Further results highlight the implications of the change to a modified breeding goal based on the example of a new index comprising eight, partly new, trait complexes, which is used since 2021 in the German Holstein breeding program. The proposed framework and the analytical tools and software provided will be useful to define more rational and generally accepted breeding objectives in the future.


Assuntos
Genoma , Seleção Genética , Animais , Bovinos/genética , Fenótipo , Genômica , Modelos Genéticos
6.
Nature ; 546(7660): 622-626, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28658228

RESUMO

Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

7.
BMC Genomics ; 23(1): 193, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264116

RESUMO

BACKGROUND: Structural variants (SV) are causative for some prominent phenotypic traits of livestock as different comb types in chickens or color patterns in pigs. Their effects on production traits are also increasingly studied. Nevertheless, accurately calling SV remains challenging. It is therefore of interest, whether close-by single nucleotide polymorphisms (SNPs) are in strong linkage disequilibrium (LD) with SVs and can serve as markers. Literature comes to different conclusions on whether SVs are in LD to SNPs on the same level as SNPs to other SNPs. The present study aimed to generate a precise SV callset from whole-genome short-read sequencing (WGS) data for three commercial chicken populations and to evaluate LD patterns between the called SVs and surrounding SNPs. It is thereby the first study that assessed LD between SVs and SNPs in chickens. RESULTS: The final callset consisted of 12,294,329 bivariate SNPs, 4,301 deletions (DEL), 224 duplications (DUP), 218 inversions (INV) and 117 translocation breakpoints (BND). While average LD between DELs and SNPs was at the same level as between SNPs and SNPs, LD between other SVs and SNPs was strongly reduced (DUP: 40%, INV: 27%, BND: 19% of between-SNP LD). A main factor for the reduced LD was the presence of local minor allele frequency differences, which accounted for 50% of the difference between SNP - SNP and DUP - SNP LD. This was potentially accompanied by lower genotyping accuracies for DUP, INV and BND compared with SNPs and DELs. An evaluation of the presence of tag SNPs (SNP in highest LD to the variant of interest) further revealed DELs to be slightly less tagged by WGS SNPs than WGS SNPs by other SNPs. This difference, however, was no longer present when reducing the pool of potential tag SNPs to SNPs located on four different chicken genotyping arrays. CONCLUSIONS: The results implied that genomic variance due to DELs in the chicken populations studied can be captured by different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling might be advisable for DUP, INV, and BND effects.


Assuntos
Galinhas , Polimorfismo de Nucleotídeo Único , Animais , Galinhas/genética , Frequência do Gene , Genoma , Genótipo , Desequilíbrio de Ligação , Suínos
8.
Virol J ; 19(1): 30, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189916

RESUMO

BACKGROUND: Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al., in Viruses 12(1):38, 2019). The goal of this study was to characterize PERV-F in more detail and to analyze the probability of virus isolation from other animals. METHODS: The recombination site in the envelope (env) gene, the long terminal repeats (LTR), the proteins and the morphology of the recombinant PERV-F were characterized by polymerase chain reaction (PCR), sequencing, Western blot analysis, immunofluorescence, and transmissible electron microscopy. Mitogen-stimulated PBMCs from 47 additional pigs, including 17 new GöMP, were co-cultured with highly susceptible human 293 T cells, and the PERV-A/C prevalence and PERV transmission was analyzed by PCR. RESULTS: PERV-F, isolated from a GöMP, is an infectious human-tropic PERV-A/C virus with a novel type of recombination in the env gene. The length of the LTR of PERV-F increased after passaging on human cells. In a few minipigs, but not in German landrace pigs, PERV-A/C were found. There was no transmission of human-tropic PERV-A/C from additional 47 pigs, including 17 GöMP, to human cells. CONCLUSION: These data show that human-tropic recombinant PERV-A/C proviruses can only be found in a very small number of minipigs, but not in other pigs, and that their isolation as infectious virus able to replicate on human cells is an extremely rare event, even when using highly susceptible 293 cells.


Assuntos
Retrovirus Endógenos , Animais , Retrovirus Endógenos/genética , Humanos , Leucócitos Mononucleares , Provírus/genética , Suínos , Porco Miniatura/genética , Transplante Heterólogo
9.
BMC Genomics ; 22(1): 340, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980139

RESUMO

BACKGROUND: Population genetic studies based on genotyped single nucleotide polymorphisms (SNPs) are influenced by a non-random selection of the SNPs included in the used genotyping arrays. The resulting bias in the estimation of allele frequency spectra and population genetics parameters like heterozygosity and genetic distances relative to whole genome sequencing (WGS) data is known as SNP ascertainment bias. Full correction for this bias requires detailed knowledge of the array design process, which is often not available in practice. This study suggests an alternative approach to mitigate ascertainment bias of a large set of genotyped individuals by using information of a small set of sequenced individuals via imputation without the need for prior knowledge on the array design. RESULTS: The strategy was first tested by simulating additional ascertainment bias with a set of 1566 chickens from 74 populations that were genotyped for the positions of the Affymetrix Axiom™ 580 k Genome-Wide Chicken Array. Imputation accuracy was shown to be consistently higher for populations used for SNP discovery during the simulated array design process. Reference sets of at least one individual per population in the study set led to a strong correction of ascertainment bias for estimates of expected and observed heterozygosity, Wright's Fixation Index and Nei's Standard Genetic Distance. In contrast, unbalanced reference sets (overrepresentation of populations compared to the study set) introduced a new bias towards the reference populations. Finally, the array genotypes were imputed to WGS by utilization of reference sets of 74 individuals (one per population) to 98 individuals (additional commercial chickens) and compared with a mixture of individually and pooled sequenced populations. The imputation reduced the slope between heterozygosity estimates of array data and WGS data from 1.94 to 1.26 when using the smaller balanced reference panel and to 1.44 when using the larger but unbalanced reference panel. This generally supported the results from simulation but was less favorable, advocating for a larger reference panel when imputing to WGS. CONCLUSIONS: The results highlight the potential of using imputation for mitigation of SNP ascertainment bias but also underline the need for unbiased reference sets.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Galinhas/genética , Frequência do Gene , Genótipo
10.
Genet Sel Evol ; 53(1): 36, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853523

RESUMO

BACKGROUND: Migration of a population from its founder population is expected to cause a reduction of its genetic diversity and facilitates differentiation between the population and its founder population, as predicted by the theory of genetic isolation by distance. Consistent with that theory, a model of expansion from a single founder predicts that patterns of genetic diversity in populations can be explained well by their geographic expansion from their founders, which is correlated with genetic differentiation. METHODS: To investigate this in chicken, we estimated the relationship between the genetic diversity of 160 domesticated chicken populations and their genetic distances to wild chicken populations. RESULTS: Our results show a strong inverse relationship, i.e. 88.6% of the variation in the overall genetic diversity of domesticated chicken populations was explained by their genetic distance to the wild populations. We also investigated whether the patterns of genetic diversity of different types of single nucleotide polymorphisms (SNPs) and genes are similar to that of the overall genome. Among the SNP classes, the non-synonymous SNPs deviated most from the overall genome. However, genetic distance to the wild chicken still explained more variation in domesticated chicken diversity across all SNP classes, which ranged from 83.0 to 89.3%. CONCLUSIONS: Genetic distance between domesticated chicken populations and their wild relatives can predict the genetic diversity of the domesticated populations. On the one hand, genes with little genetic variation across populations, regardless of the genetic distance to the wild population, are associated with major functions such as brain development. Changes in such genes may be detrimental to the species. On the other hand, genetic diversity seems to change at a faster rate within genes that are associated with e.g. protein transport and protein and lipid metabolic processes. In general, such genes may be flexible to changes according to the populations' needs. These results contribute to the knowledge of the evolutionary patterns of different functional genomic regions in the chicken.


Assuntos
Galinhas/genética , Evolução Molecular , Polimorfismo de Nucleotídeo Único , Animais , Galinhas/classificação , Domesticação , Filogenia , Seleção Artificial
11.
BMC Genomics ; 21(1): 308, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299342

RESUMO

BACKGROUND: Göttingen Minipigs (GMP) is the smallest commercially available minipig breed under a controlled breeding scheme and is globally bred in five isolated colonies. The genetic isolation harbors the risk of stratification which might compromise the identity of the breed and its usability as an animal model for biomedical and human disease. We conducted whole genome re-sequencing of two DNA-pools per colony to assess genomic differentiation within and between colonies. We added publicly available samples from 13 various pig breeds and discovered overall about 32 M loci, ~ 16 M. thereof variable in GMPs. Individual samples were virtually pooled breed-wise. FST between virtual and DNA pools, a phylogenetic tree, principal component analysis (PCA) and evaluation of functional SNP classes were conducted. An F-test was performed to reveal significantly differentiated allele frequencies between colonies. Variation within a colony was quantified as expected heterozygosity. RESULTS: Phylogeny and PCA showed that the GMP is easily discriminable from all other breads, but that there is also differentiation between the GMP colonies. Dependent on the contrast between GMP colonies, 4 to 8% of all loci had significantly different allele frequencies. Functional annotation revealed that functionally non-neutral loci are less prone to differentiation. Annotation of highly differentiated loci revealed a couple of deleterious mutations in genes with putative effects in the GMPs . CONCLUSION: Differentiation and annotation results suggest that the underlying mechanisms are rather drift events than directed selection and limited to neutral genome regions. Animal exchange seems not yet necessary. The Relliehausen colony appears to be the genetically most unique GMP sub-population and could be a valuable resource if animal exchange is required to maintain uniformity of the GMP.


Assuntos
Cruzamento , Polimorfismo de Nucleotídeo Único , Porco Miniatura/classificação , Porco Miniatura/genética , Animais , Frequência do Gene , Filogenia , Locos de Características Quantitativas , Análise de Sequência de DNA , Suínos , Sequenciamento Completo do Genoma
12.
BMC Genomics ; 21(1): 624, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917133

RESUMO

BACKGROUND: The cattle introduced by European conquerors during the Brazilian colonization period were exposed to a process of natural selection in different types of biomes throughout the country, leading to the development of locally adapted cattle breeds. In this study, whole-genome re-sequencing data from indicine and Brazilian locally adapted taurine cattle breeds were used to detect genomic regions under selective pressure. Within-population and cross-population statistics were combined separately in a single score using the de-correlated composite of multiple signals (DCMS) method. Putative sweep regions were revealed by assessing the top 1% of the empirical distribution generated by the DCMS statistics. RESULTS: A total of 33,328,447 biallelic SNPs with an average read depth of 12.4X passed the hard filtering process and were used to access putative sweep regions. Admixture has occurred in some locally adapted taurine populations due to the introgression of exotic breeds. The genomic inbreeding coefficient based on runs of homozygosity (ROH) concurred with the populations' historical background. Signatures of selection retrieved from the DCMS statistics provided a comprehensive set of putative candidate genes and revealed QTLs disclosing cattle production traits and adaptation to the challenging environments. Additionally, several candidate regions overlapped with previous regions under selection described in the literature for other cattle breeds. CONCLUSION: The current study reported putative sweep regions that can provide important insights to better understand the selective forces shaping the genome of the indicine and Brazilian locally adapted taurine cattle breeds. Such regions likely harbor traces of natural selection pressures by which these populations have been exposed and may elucidate footprints for adaptation to the challenging climatic conditions.


Assuntos
Aclimatação , Bovinos/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Brasil , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
13.
Opt Express ; 28(17): 24452-24458, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32906986

RESUMO

Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolithic LN PICs fabricated on 4- and 6-inch wafers with deep ultraviolet lithography and show smooth and uniform etching, achieving 0.27 dB/cm optical propagation loss on wafer-scale. Our results show that LN PICs are fundamentally scalable and can be highly cost-effective.

14.
BMC Genomics ; 20(1): 345, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064348

RESUMO

BACKGROUND: Since domestication, chickens did not only disperse into the different parts of the world but they have also undergone significant genomic changes in this process. Many breeds, strains or lines have been formed and those represent the diversity of the species. However, other than the natural evolutionary forces, management practices (including those that threaten the persistence of genetic diversity) following domestication have shaped the genetic make-up of and diversity between today's chicken breeds. As part of the SYNBREED project, samples from a wide variety of chicken populations have been collected across the globe and were genotyped with a high density SNP array. The panel consists of the wild type, commercial layers and broilers, indigenous village/local type and fancy chicken breeds. The SYNBREED chicken diversity panel (SCDP) is made available to serve as a public basis to study the genetic structure of chicken diversity. In the current study we analyzed the genetic diversity between and within the populations in the SCDP, which is important for making informed decisions for effective management of farm animal genetic resources. RESULTS: Many of the fancy breeds cover a wide spectrum and clustered with other breeds of similar supposed origin as shown by the phylogenetic tree and principal component analysis. However, the fancy breeds as well as the highly selected commercial layer lines have reduced genetic diversity within the population, with the average observed heterozygosity estimates lower than 0.205 across their breeds' categories and the average proportion of polymorphic loci lower than 0.680. We show that there is still a lot of genetic diversity preserved within the wild and less selected African, South American and some local Asian and European breeds with the average observed heterozygosity greater than 0.225 and the average proportion of polymorphic loci larger than 0.720 within their breeds' categories. CONCLUSIONS: It is important that such highly diverse breeds are maintained for the sustainability and flexibility of future chicken breeding. This diversity panel provides opportunities for exploitation for further chicken molecular genetic studies. With the possibility to further expand, it constitutes a very useful community resource for chicken genetic diversity research.


Assuntos
Cruzamento , Galinhas/genética , Biologia Computacional/métodos , Marcadores Genéticos , Genética Populacional , Polimorfismo de Nucleotídeo Único , Animais , Galinhas/classificação , Feminino , Genótipo , Masculino , Filogenia
15.
Opt Express ; 27(18): 25251-25264, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510400

RESUMO

The ability of laser systems to emit different adjustable temporal pulse profiles and patterns is desirable for a broad range of applications. While passive mode-locking techniques have been widely employed for the realization of ultrafast laser pulses with mainly Gaussian or hyperbolic secant temporal profiles, the generation of versatile pulse shapes in a controllable way and from a single laser system remains a challenge. Here we show that a nonlinear amplifying loop mirror (NALM) laser with a bandwidth-limiting filter (in a nearly dispersion-free arrangement) and a short integrated nonlinear waveguide enables the realization and distinct control of multiple mode-locked pulsing regimes (e.g., Gaussian pulses, square waves, fast sinusoidal-like oscillations) with repetition rates that are variable from the fundamental (7.63 MHz) through its 205th harmonic (1.56 GHz). These dynamics are described by a newly developed and compact theoretical model, which well agrees with our experimental results. It attributes the control of emission regimes to the change of the NALM response function that is achieved by the adjustable interplay between the NALM amplification and the nonlinearity. In contrast to previous square wave emissions, we experimentally observed that an Ikeda instability was responsible for square wave generation. The presented approach enables laser systems that can be universally applied to various applications, e.g., spectroscopy, ultrafast signal processing and generation of non-classical light states.

16.
Phys Rev Lett ; 122(12): 120501, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978097

RESUMO

Entanglement witnesses are operators that are crucial for confirming the generation of specific quantum systems, such as multipartite and high-dimensional states. For this reason, many witnesses have been theoretically derived which commonly focus on establishing tight bounds and exhibit mathematical compactness as well as symmetry properties similar to that of the quantum state. However, for increasingly complex quantum systems, established witnesses have lacked experimental achievability, as it has become progressively more challenging to design the corresponding experiments. Here, we present a universal approach to derive entanglement witnesses that are capable of detecting the presence of any targeted complex pure quantum system and that can be customized towards experimental restrictions or accessible measurement settings. Using this technique, we derive experimentally optimized witnesses that are able to detect multipartite d-level cluster states, and that require only two measurement settings. We present explicit examples for customizing the witness operators given different realistic experimental restrictions, including witnesses for high-dimensional entanglement that use only two-dimensional projection measurements. Our work enables us to confirm the presence of probed quantum states using methods that are compatible with practical experimental realizations in different quantum platforms.

17.
BMC Genomics ; 19(1): 22, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304727

RESUMO

BACKGROUND: Single nucleotide polymorphism (SNP) panels have been widely used to study genomic variations within and between populations. Methods of SNP discovery have been a matter of debate for their potential of introducing ascertainment bias, and genetic diversity results obtained from the SNP genotype data can be misleading. We used a total of 42 chicken populations where both individual genotyped array data and pool whole genome resequencing (WGS) data were available. We compared allele frequency distributions and genetic diversity measures (expected heterozygosity (H e ), fixation index (F ST ) values, genetic distances and principal components analysis (PCA)) between the two data types. With the array data, we applied different filtering options (SNPs polymorphic in samples of two Gallus gallus wild populations, linkage disequilibrium (LD) based pruning and minor allele frequency (MAF) filtering, and combinations thereof) to assess their potential to mitigate the ascertainment bias. RESULTS: Rare SNPs were underrepresented in the array data. Array data consistently overestimated H e compared to WGS data, however, with a similar ranking of the breeds, as demonstrated by Spearman's rank correlations ranging between 0.956 and 0.985. LD based pruning resulted in a reduced overestimation of H e compared to the other filters and slightly improved the relationship with the WGS results. The raw array data and those with polymorphic SNPs in the wild samples underestimated pairwise F ST values between breeds which had low F ST (<0.15) in the WGS, and overestimated this parameter for high WGS F ST (>0.15). LD based pruned data underestimated F ST in a consistent manner. The genetic distance matrix from LD pruned data was more closely related to that of WGS than the other array versions. PCA was rather robust in all array versions, since the population structure on the PCA plot was generally well captured in comparison to the WGS data. CONCLUSIONS: Among the tested filtering strategies, LD based pruning was found to account for the effects of ascertainment bias in the relatively best way, producing results which are most comparable to those obtained from WGS data and therefore is recommended for practical use.


Assuntos
Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Animais , Galinhas/genética , Frequência do Gene , Análise de Sequência com Séries de Oligonucleotídeos
18.
Genet Sel Evol ; 50(1): 16, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653506

RESUMO

BACKGROUND: The single-step covariance matrix H combines the pedigree-based relationship matrix [Formula: see text] with the more accurate information on realized relatedness of genotyped individuals represented by the genomic relationship matrix [Formula: see text]. In particular, to improve convergence behavior of iterative approaches and to reduce inflation, two weights [Formula: see text] and [Formula: see text] have been introduced in the definition of [Formula: see text], which blend the inverse of a part of [Formula: see text] with the inverse of [Formula: see text]. Since the definition of this blending is based on the equation describing [Formula: see text], its impact on the structure of [Formula: see text] is not obvious. In a joint discussion, we considered the question of the shape of [Formula: see text] for non-trivial [Formula: see text] and [Formula: see text]. RESULTS: Here, we present the general matrix [Formula: see text] as a function of these parameters and discuss its structure and properties. Moreover, we screen for optimal values of [Formula: see text] and [Formula: see text] with respect to predictive ability, inflation and iterations up to convergence on a well investigated, publicly available wheat data set. CONCLUSION: Our results may help the reader to develop a better understanding for the effects of changes of [Formula: see text] and [Formula: see text] on the covariance model. In particular, we give theoretical arguments that as a general tendency, inflation will be reduced by increasing [Formula: see text] or by decreasing [Formula: see text].


Assuntos
Genômica/métodos , Triticum/genética , Algoritmos , Genoma de Planta , Genótipo , Triticum/classificação
19.
Genet Sel Evol ; 50(1): 22, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720080

RESUMO

BACKGROUND: This study aimed at (1) assessing the genomic stratification of experimental lines of Nelore cattle that have experienced different selection regimes for growth traits, and (2) identifying genomic regions that have undergone recent selection. We used a sample of 763 animals genotyped with the Illumina BovineHD BeadChip, among which 674 animals originated from two lines that are maintained under directional selection for increased yearling body weight and 89 animals from a control line that is maintained under stabilizing selection. RESULTS: Multidimensional analysis of the genomic dissimilarity matrix and admixture analysis revealed a substantial level of population stratification between the directional selection lines and the stabilizing selection control line. Two of the three tests used to detect selection signatures (FST, XP-EHH and iHS) revealed six candidate regions with indications of selection, which strongly indicates truly positive signals. The set of identified candidate genes included several genes with roles that are functionally related to growth metabolism, such as COL14A1, CPT1C, CRH, TBC1D1, and XKR4. CONCLUSIONS: The current study identified genetic stratification that resulted from almost four decades of divergent selection in an experimental Nelore population, and highlighted autosomal genomic regions that present patterns of recent selection. Our findings provide a basis for a better understanding of the metabolic mechanism that underlies the growth traits, which are modified by selection for yearling body weight.


Assuntos
Bovinos/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sequenciamento Completo do Genoma/veterinária , Animais , Cruzamento , Bovinos/genética , Impressões Digitais de DNA , Metabolismo Energético , Feminino , Genótipo , Crescimento , Haplótipos , Masculino , Fenótipo , Locos de Características Quantitativas
20.
Opt Express ; 25(16): 18940-18949, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041085

RESUMO

The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa