RESUMO
Pancreatic ductal adenocarcinoma (PDAC), a metabolic disorder, remains one of the leading cancer mortality sources worldwide. An initial response to treatments, such as gemcitabine (GEM), is often followed by emergent resistance reflecting an urgent need for alternate therapies. The PDAC resistance to GEM could be due to ERK1/2 activity. However, successful ERKi therapy is hindered due to low ligand efficiency, poor drug delivery, and toxicity. In this study, to overcome these limitations, we have designed pH-responsive nanoparticles (pHNPs) with a size range of 100-150 nm for the simultaneous delivery of ERKi (SCH 772984) and GEM with tolerable doses. These pHNPs are polyethylene glycol (PEG)-containing amphiphilic polycarbonate block copolymers with tertiary amine side chains. They are systemically stable and capable of improving in vitro and in vivo drug delivery at the cellular environment's acidic pH. The functional analysis indicates that the nanomolar doses of ERKi or GEM significantly decreased the 50% growth inhibition (IC50) of PDAC cells when encapsulated in pHNPs compared to free drugs. The combination of ERKi with GEM displayed a synergistic inhibitory effect. Unexpectedly, we uncover that the minimum effective dose of ERKi significantly promotes GEM activities on PDAC cells. Furthermore, we found that pHNP-encapsulated combination therapy of ERKi with GEM was superior to unencapsulated combination drug therapy. Our findings, thus, reveal a simple, yet efficient, drug delivery approach to overcome the limitations of ERKi for clinical applications and present a new model of sensitization of GEM by ERKi with no or minimal toxicity.
Assuntos
Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Polímeros/química , Inibidores de Proteínas Quinases/química , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , GencitabinaRESUMO
Piperlongumine (PL) is an alkaloid that inhibits glutathione S-transferase pi 1 (GSTP1) activity, resulting in elevated reactive oxygen species (ROS) levels and cancer-selective cell death. We aimed to identify stress-associated molecular responses to PL treatment in pancreatic ductal adenocarcinoma (PDAC) cells. GSTP1 directly interacts with JNK, which is activated by oxidative stress and can lead to decreased cancer cell proliferation and cell death. Therefore, we hypothesized that JNK pathways are activated in response to PL treatment. Our results show PL causes dissociation of GSTP1 from JNK; robust JNK, c-Jun, and early ERK activation followed by suppression; increased expression of cleaved caspase-3 and cleaved PARP; and nuclear translocation of Nrf2 and c-Myc in PDAC cells. Gene expression analysis revealed PL caused a > 20-fold induction of heme oxygenase-1 (HO-1), which we hypothesized was a survival mechanism for PDAC cells under enhanced oxidative stress. HO-1 knockout resulted in enhanced PL-induced PDAC cell death under hypoxic conditions. Similarly, high concentrations of the HO-1 inhibitor, ZnPP (10 µM), sensitized PDAC cells to PL; however, lower concentrations ZnPP (10 nM) and high or low concentrations of SnPP both protected PDAC cells from PL-induced cell death. Interestingly, the JNK inhibitor significantly blocked PL-induced PDAC cell death, Nrf-2 nuclear translocation, and HMOX-1 mRNA expression. Collectively, the results demonstrate JNK signaling contributes to PL-induced PDAC cell death, and at the same time, activates Nrf-2 transcription of HMOX-1 as a compensatory survival mechanism. These results suggest that elevating oxidative stress (using PL) while at the same time impairing antioxidant capacity (inhibiting HO-1) may be an effective therapeutic approach for PDAC.
Assuntos
Apoptose/efeitos dos fármacos , Dioxolanos/farmacologia , Heme Oxigenase-1/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pancreáticas , Alcaloides/farmacologia , Alcaloides/toxicidade , Linhagem Celular Tumoral/metabolismo , Dioxolanos/toxicidade , Heme Oxigenase-1/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Neoplasias PancreáticasRESUMO
A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom.
Assuntos
Biologia Celular/educação , Modelos Educacionais , Biologia Molecular/educaçãoRESUMO
Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG), which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anticancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study, we investigated the anticancer effects of EL for several nonsmall cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The antiproliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G1-phase cell cycle arrest. Molecular studies revealed that EL decreased mRNA or protein expression levels of the G1-phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21WAF1/CIP1, a negative regulator of the G1 phase. The results suggest that EL inhibits the growth of NSCLC cell lines by downregulating G1-phase cyclins and CDKs, and upregulating p21WAF1/CIP1, which leads to G1-phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy.
Assuntos
4-Butirolactona/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , 4-Butirolactona/administração & dosagem , 4-Butirolactona/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lignanas/administração & dosagem , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologiaRESUMO
BACKGROUND: Systemic toxicity of chemotherapeutic agents and the challenges associated with targeting metastatic tumors are limiting factors for current lung cancer therapeutic approaches. To address these issues, plant-derived bioactive components have been investigated for their anti-cancer properties because many of these agents are non-toxic to healthy tissues. Enterolactone (EL) is a flaxseed-derived mammalian lignan that has demonstrated anti-migratory properties for various cancers, but EL has not been investigated in the context of lung cancer, and its anticancer mechanisms are ill-defined. We hypothesized that EL could inhibit lung cancer cell motility by affecting the FAK-Src signaling pathway. METHODS: Non-toxic concentrations of EL were identified for A549 and H460 human lung cancer cells by conducting 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Dephenyltetrazolium Bromide (MTT) assays. The anti-migratory and anti-invasive potential of EL for lung cancer cell lines was determined by scratch wound healing and Matrigel® invasion assays. Changes in filamentous actin (F-actin) fiber density and length in EL-treated cells were determined using phalloidin-conjugated rhodamine dye and fluorescent microscopy. Vinculin expression in focal adhesions upon EL treatment was determined by immunocytochemistry. Gene and protein expression levels of FAK-Src signaling molecules in EL-treated lung cancer cells were determined using PCR arrays, qRT-PCR, and western blotting. RESULTS: Non-toxic concentrations of EL inhibited lung cancer cell migration and invasion in a concentration- and time-dependent manner. EL treatment reduced the density and number of F-actin fibers in lung cancer cell lines, and reduced the number and size of focal adhesions. EL decreased phosphorylation of FAK and its downstream targets, Src, paxillin, and decreased mRNA expression of cell motility-related genes, RhoA, Rac1, and Cdc42 in lung cancer cells. CONCLUSIONS: Our data suggest that EL suppresses lung cancer cell motility and invasion by altering FAK activity and subsequent activation of downstream proteins needed for focal adhesion formation and cytoskeletal rearrangement. Therefore, administration of EL may serve as a safe and complementary approach for inhibiting lung tumor cell motility, invasion, and metastasis.
Assuntos
4-Butirolactona/análogos & derivados , Movimento Celular/efeitos dos fármacos , Linho/química , Lignanas/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatologia , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , 4-Butirolactona/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fosforilação/efeitos dos fármacos , Quinases da Família src/genética , Quinases da Família src/metabolismoRESUMO
BACKGROUND: Pancreatic cancer is a leading cause of cancer-related deaths in the world with a 5-year survival rate of less than 6%. Currently, there is no successful therapeutic strategy for advanced pancreatic cancer, and new effective strategies are urgently needed. Recently, an arginine deprivation agent, arginine deiminase, was found to inhibit the growth of some tumor cells (i.e., hepatocellular carcinoma, melanoma, and lung cancer) deficient in argininosuccinate synthetase (ASS), an enzyme used to synthesize arginine. The purpose of this study was to evaluate the therapeutic efficacy of arginine deiminase in combination with gemcitabine, the first line chemotherapeutic drug for patients with pancreatic cancer, and to identify the mechanisms associated with its anticancer effects. METHODS: In this study, we first analyzed the expression levels of ASS in pancreatic cancer cell lines and tumor tissues using immunohistochemistry and RT-PCR. We further tested the effects of the combination regimen of arginine deiminase with gemcitabine on pancreatic cancer cell lines in vitro and in vivo. RESULTS: Clinical investigation showed that pancreatic cancers with reduced ASS expression were associated with higher survivin expression and more lymph node metastasis and local invasion. Treatment of ASS-deficient PANC-1 cells with arginine deiminase decreased their proliferation in a dose- and time-dependent manner. Furthermore, arginine deiminase potentiated the antitumor effects of gemcitabine on PANC-1 cells via multiple mechanisms including induction of cell cycle arrest in the S phase, upregulation of the expression of caspase-3 and 9, and inhibition of activation of the NF-κB survival pathway by blocking NF-κB p65 signaling via suppressing the nuclear translocation and phosphorylation (serine 536) of NF-κB p65 in vitro. Moreover, arginine deiminase can enhance antitumor activity of gemcitabine-based chemotherapy in the mouse xenograft model. CONCLUSIONS: Our results suggest that arginine deprivation by arginine deiminase, in combination with gemcitabine, may offer a novel effective treatment strategy for patients with pancreatic cancer and potentially improve the outcome of patients with pancreatic cancer.
Assuntos
Argininossuccinato Sintase/deficiência , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Hidrolases/genética , NF-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Argininossuccinato Sintase/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Hidrolases/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/patologia , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
ABSTRACT: Pancreatic cancer remains one of the deadliest of all cancer types with a 5-year overall survival rate of just 12%. Preclinical models available for understanding the disease pathophysiology have evolved significantly in recent years. Traditionally, commercially available 2-dimensional cell lines were developed to investigate mechanisms underlying tumorigenesis, metastasis, and drug resistance. However, these cells grow as monolayer cultures that lack heterogeneity and do not effectively represent tumor biology. Developing patient-derived xenografts and genetically engineered mouse models led to increased cellular heterogeneity, molecular diversity, and tissues that histologically represent the original patient tumors. However, these models are relatively expensive and very timing consuming. More recently, the advancement of fast and inexpensive in vitro models that better mimic disease conditions in vivo are on the rise. Three-dimensional cultures like organoids and spheroids have gained popularity and are considered to recapitulate complex disease characteristics. In addition, computational genomics, transcriptomics, and metabolomic models are being developed to simulate pancreatic cancer progression and predict better treatment strategies. Herein, we review the challenges associated with pancreatic cancer research and available analytical models. We suggest that an integrated approach toward using these models may allow for developing new strategies for pancreatic cancer precision medicine.
Assuntos
Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Modelos Animais de Doenças , Carcinogênese , Organoides/patologia , Pâncreas/patologiaRESUMO
Circulating tumor cells (CTCs) are cells released from the primary and metastatic tumor and intravasate into the blood or lymphatic vessels, where they are transported to distant sites and act as seeds that initiate cancer metastases or the development of further lesions. Recent advances in CTC research have shown their relevance as prognostic markers for early and metastatic disease detection, predictive biomarkers for relapse, and response to medical intervention or therapy. The rapidly evolving landscape of CTC biology has opened new avenues for understanding cancer progression, metastasis, and treatment response. Additionally, translating these findings into clinical applications holds promise for improving cancer diagnostics, prognosis, and personalized therapeutic strategies. This review discusses the significance of CTCs in cancer research and their associated challenges. We explore recent developments in the detection and characterization of CTCs and their implications in cancer research and clinical practice.
RESUMO
Anterior gradient 2 (AGR2) is often overexpressed in many human cancers, including pancreatic ductal adenocarcinoma (PDAC). Elevated AGR2 expression is known to play a critical role in tumor development, progression, and metastasis and positively correlates with poor patient survival. However, the relationship between AGR2 expression and tumor growth is not fully understood. Our study aims to investigate the impact of AGR2 knockdown on the survival of two pancreatic cancer cell lines, HPAF-II and PANC-1, that exhibit high AGR2 expression. This study revealed that the knockdown of AGR2 expression through an inducible shRNA-mediated approach reduced the proliferative ability and colony-forming potential of PDAC cells compared to scramble controls. Significantly, knocking down AGR2 led to the inhibition of multiple protein biosynthesis pathways and induced ER stress through unfolded protein response (UPR) activation. AGR2 knockdown induced ER stress and increased mitochondrial fission, while mitochondrial fusion remained unaffected. Ultimately, apoptotic cell death was heightened in AGR2 knockdown PDAC cells compared to the controls. Overall, these data reveal a new axis involving AGR2-ER stress-associated mitochondrial fission that could be targeted to improve PDAC patient outcomes.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a poor response to the limited treatment options currently available. Hence, there is a need to identify new agents that could enhance the efficacy of existing treatments. This study investigated a combination therapy using gemcitabine (GEM) and SCH772984, an extracellular signal-regulated kinase (ERK) inhibitor, in both free form and nanoparticle-encapsulated form for PDAC treatment. Cell viability and Matrigel growth assays were used to determine the anti-proliferative and cytotoxic effects of GEM and SCH772984 on PDAC cells. Additionally, western blotting was used to determine the degree to which SCH772984 engaged ERK in PDAC cells. Lastly, immunohistochemistry and hematoxylin and eosin (H&E) staining were used to determine how GEM and SCH772984 affected expression of Ki-67 cell proliferation marker in PDX (patient derived xenograft) PDAC tissues. PDAC cell lines (MIA PaCa-2 and PANC-1) treated with the combination of free GEM and SCH772984 showed reduction in cell viability compared to cells treated with free GEM or SCH772984 administered as a single agent. Encapsulated forms of GEM and SCH772984 caused a greater reduction in cell viability than the free forms. Interestingly, co-administration of GEM and SCH772984 in separate nanoparticle (NP) systems exhibited the highest reduction in cell viability. Western blotting analysis confirmed ERK signaling was inhibited by both free and encapsulated SCH772984. Importantly, GEM did not interfere with the inhibitory effect of SCH772984 on phosphorylated ERK (pERK). Collectively, our studies suggest that combination therapy with GEM and SCH772984 effectively reduced PDAC cell viability and growth, and co-administration of NP encapsulated GEM and SCH772984 in separate NP systems is an effective treatment strategy for PDAC.
RESUMO
BACKGROUND: Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. METHODS: The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. RESULTS: PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. CONCLUSIONS: This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation.
Assuntos
Amidoidrolases/biossíntese , Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , Amidoidrolases/análise , Aminopeptidases/análise , Aminopeptidases/biossíntese , Western Blotting , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Análise Serial de TecidosRESUMO
The growth hormone (GH)-insulin-like growth factor (IGF) system plays a major role in coordinating the growth of vertebrates including fish. Considerable research on the regulation of growth has focused on the production and secretion of GH from the pituitary. This review will synthesize recent work on regulating extrapituitary aspects of the GH-IGF system, which includes GH binding proteins (GHBP), GH receptors (GHR), IGF binding protein (IGFBP), and IGF receptors (IGFR). These components are widely distributed and they interact to coordinate growth as well as a host of other biological processes such as metabolism, osmoregulation, reproduction, behavior, and immunity. The GH-IGF system of fish is particularly interesting and complex because it consists of multiple subtypes of GHRs, IGFRs, and IGFBPs that arose through gene duplication events associated with the evolution of the teleost lineage. Peripheral regulation of the GH-IGF system results from adjusting peripheral sensitivity to GH and IGFs as well as from modulating the bioavailability and actions of GH and IGFs in target cells. Numerous chemicals, including hormones such as growth hormone, insulin, somatostatin, and sex steroids as well as a variety of transcription factors, proteases, and phosphatases, regulate the synthesis and activity of GHRs, GHBPs, IGFRs, and IGFBPs as well as the synthesis, secretion, and bioavailability of IGFs. In addition, numerous environmental factors such as nutritional state, photoperiod, stress, and temperature have dramatic effects on the expression and activity of peripheral components of the GH/IGF system. The complex regulation of these system components appears to be both organism- and tissue-specific.
Assuntos
Proteínas de Peixes/metabolismo , Hormônio do Crescimento/metabolismo , Somatomedinas/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Somatomedinas/genética , VertebradosRESUMO
Growth hormone (GH) initiates many of its growth-promoting actions by binding to GH receptors (GHR) and stimulating the synthesis and secretion of insulin-like growth factor-1 (IGF-1) from the liver and other sites. In this study, we used hepatocytes isolated from rainbow trout as a model system in which to determine the molecular signaling events of GH in fish. GH directly stimulated the phosphorylation of ERK, protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K), JAK2, and STAT5 in hepatocytes incubated in vitro. Activation of ERK, Akt, JAK2, and STAT5 was rapid, occurring within 5-10 min, and was concentration dependent. GH-induced ERK activation was completely blocked by the ERK pathway inhibitor, U0126, and the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex), and was partially blocked by the PI3K inhibitor LY294002. GH-stimulated Akt activation was completely blocked by LY294002 and Hex, but was not affected by U0126; whereas, STAT5 activation by GH was blocked only by Hex, and was not affected by either U0126 or LY294002. GH stimulated hepatic expression of IGF-1 mRNA as well as the secretion of IGF-1, effects that were partially or completely blocked by U0126, LY294002, and Hex. These results indicate that GHR linkage to the ERK, PI3K/Akt, or STAT pathways in trout liver cells requires activation of JAK2, and that GH-stimulated IGF-1 synthesis and secretion is mediated through the ERK, PI3K/Akt, and JAK-STAT pathways.
Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hormônio do Crescimento/farmacologia , Hepatócitos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Janus Quinases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Butadienos/farmacologia , Células Cultivadas , Cromonas/farmacologia , Cicloexanos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Janus Quinases/antagonistas & inibidores , Masculino , Modelos Animais , Morfolinas/farmacologia , Nitrilas/farmacologia , Oncorhynchus mykiss , Inibidores de Fosfoinositídeo-3 Quinase , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Teleost fish store lipids among several tissues primarily as triacylglycerol (TG). Upon metabolic demand, stored TGs are hydrolyzed by hormone-sensitive lipase (HSL). In this study, two distinct cDNAs encoding HSL were isolated, cloned, and sequenced from adipose tissue of rainbow trout. The full-length cDNAs, designated HSL1 and HSL2, were 2562-bp and 2887-bp in length, respectively, and share 82% nucleotide identity. Phylogenetic analysis suggests that the two HSLs derive from paralogous genes that may have arisen during a teleost-specific genome duplication event. Quantitative real-time PCR revealed that HSL1 and HSL2 were differentially expressed, both in terms of distribution among tissues as well as in terms of abundance within selected tissues of juvenile trout. HSL1 and HSL2 mRNAs were detected in the brain, spleen, pancreas, kidney, gill, intestine, heart, and white muscle, but were most abundant in the red muscle, liver, and adipose tissue. HSL1 mRNA was more abundant than HSL2 mRNA in the adipose tissue, whereas HSL2 mRNA was more abundant than HSL1 mRNA in the liver. Short term fasting (4 weeks) increased HSL1 and HSL2 mRNA expression in the adipose tissue, but only HSL1 mRNA levels increased in the liver and the red muscle. During a prolonged fast (6 weeks), there was continued elevation of HSL1 and HSL2 mRNA levels in the liver and muscle; HSL mRNA expression in mesenteric fat declined, coincident with depletion of mesenteric fat mass. Refeeding fish reduced HSL expression to levels seen in continuously fed fish. These findings indicate that the pattern of HSL expression is consistent with the diverse lipid storage pattern of fish and suggest that distinct mechanisms serve to regulate differential expression of the two HSLs in tissues and during a progressive fast.
Assuntos
Perfilação da Expressão Gênica , Estado Nutricional/genética , Oncorhynchus mykiss/genética , Esterol Esterase/genética , Tecido Adiposo/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/análise , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Esterol Esterase/isolamento & purificaçãoRESUMO
In humans, the glutathione S-transferases (GST) protein family is composed of seven members that present remarkable structural similarity and some degree of overlapping functionalities. GST proteins are crucial antioxidant enzymes that regulate stress-induced signaling pathways. Interestingly, overactive GST proteins are a frequent feature of many human cancers. Recent evidence has revealed that the biology of most GST proteins is complex and multifaceted and that these proteins actively participate in tumorigenic processes such as cell survival, cell proliferation, and drug resistance. Structural and pharmacological studies have identified various GST inhibitors, and these molecules have progressed to clinical trials for the treatment of cancer and other diseases. In this review, we discuss recent findings in GST protein biology and their roles in cancer development, their contribution in chemoresistance, and the development of GST inhibitors for cancer treatment.
RESUMO
Glutathione S-transferase pi-1 (GSTP1) plays an important role in regulating oxidative stress by conjugating glutathione to electrophiles. GSTP1 is overexpressed in breast, colon, lung, and prostate tumors, where it contributes to tumor progression and drug resistance; however, the role of GSTP1 in pancreatic ductal adenocarcinoma (PDAC) is not well understood. Using shRNA, we knocked down GSTP1 expression in three different PDAC cell lines and determined the effect on cell proliferation, cell cycle progression, and reactive oxygen species (ROS) levels. Our results show GSTP1 knockdown reduces PDAC cell growth, prolongs the G0/G1 phase, and elevates ROS in PDAC cells. Furthermore, GSTP1 knockdown results in the increased phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun and the decreased phosphorylation of extracellular signal-regulated kinase (ERK), p65, the reduced expression of specificity protein 1 (Sp1), and the increased expression of apoptosis-promoting genes. The addition of the antioxidant glutathione restored cell viability and returned protein expression levels to those found in control cells. Collectively, these data support the working hypothesis that the loss of GSTP1 elevates oxidative stress, which alters mitogen-activated protein (MAP) kinases and NF-κB signaling, and induces apoptosis. In support of these in vitro data, nude mice bearing orthotopically implanted GSTP1-knockdown PDAC cells showed an impressive reduction in the size and weight of tumors compared to the controls. Additionally, we observed reduced levels of Ki-67 and increased expression of cleaved caspase-3 in GSTP1-knockdown tumors, suggesting GSTP1 knockdown impedes proliferation and upregulates apoptosis in PDAC cells. Together, these results indicate that GSTP1 plays a significant role in PDAC cell growth and provides support for the pursuit of GSTP1 inhibitors as therapeutic agents for PDAC.
RESUMO
Several challenges present themselves when discussing current approaches to the prevention or treatment of pancreatic cancer. Up to 45% of the risk of pancreatic cancer is attributed to unknown causes, making effective prevention programs difficult to design. The most common type of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is generally diagnosed at a late stage, leading to a poor prognosis and 5-year survival estimate. PDAC tumors are heterogeneous, leading to many identified cell subtypes within one patient's primary tumor. This explains why there is a high frequency of tumors that are resistant to standard treatments, leading to high relapse rates. This review will discuss how epigenetic technologies and epigenome-wide association studies have been used to address some of these challenges and the future promises these approaches hold.
RESUMO
Limited effectiveness of Raf and MEK inhibitors has impelled the interest to use the inhibitors of Extra-cellular Receptor Kinase (ERK) pathway in combination with Gemcitabine (GEM) in pancreatic cancer. However, off-target abundance of ERK receptors, challenging physico-chemical properties, and dose-limiting toxicity of the inhibitor has presented critical challenges towards fabricating this combination amenable for clinical translation. Herein we report a pharmaceutical nanoformulation of GEM and an ERK inhibitor (SCH 772984) co-stabilized within a pH-sensing nanocarrier (NC, with a hydrodynamic diameter of 161 ± 5.0 nm). The NCs were modularly derived from a triblock, self-assembling copolymer, and were chemically conjugated with GEM and encapsulated with SCH772984 at a loading content of 20.2% and 18.3%, respectively. Through pH-mediated unfolding of the individual blocks of the copolymer, the NCs were able to control the release of encapsulated drugs, traffic through cellular membranes, engage target receptors, suppress proliferation of pancreatic cancer cells, and accumulate at disease sites. Collectively our studies showed the feasibility of co-delivery of a combination chemotherapy consisting of GEM and an ERK inhibitor from a NC platform, which can sense and respond to tumor microenvironment of pancreatic cancer setting.
RESUMO
With the recent rise of alternative instructional methodologies such as flipped classrooms and active learning, many core concepts are being introduced outside of the classroom prior to scheduled class meeting times. One popular means for external concept introduction in many undergraduate biology courses is the use of stand-alone online learning modules. Using a group of four large introductory biology course sections, we investigate the use of a stand-alone online learning module developed using animations from Virtual Cell Animation Collection as a resource for the introduction of cellular respiration concepts outside of the classroom. Results from four sections of introductory biology (n = 629) randomized to treatments show that students who interacted with the stand-alone online learning module had significantly higher normalized gain scores on a cellular respiration assessment than students who only attended a traditional lecture as a means of concept introduction (p < 0.001, d = 0.59). These findings suggest a superior ability to convey certain introductory cellular respiration topics in a stand-alone manner outside of the classroom than in a more traditional lecture-based classroom setting.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to a late diagnosis and poor response to available treatments. There is a need to identify complementary treatment strategies that will enhance the efficacy and reduce the toxicity of currently used therapeutic approaches. We investigated the ability of a known ROS inducer, piperlongumine (PL), to complement the modest anti-cancer effects of the approved chemotherapeutic agent gemcitabine (GEM) in PDAC cells in vitro and in vivo. PDAC cells treated with PL + GEM showed reduced cell viability, clonogenic survival, and growth on Matrigel compared to control and individually-treated cells. Nude mice bearing orthotopically implanted MIA PaCa-2 cells treated with both PL (5 mg/kg) and GEM (25 mg/kg) had significantly lower tumor weight and volume compared to control and single agent-treated mice. RNA sequencing (RNA-Seq) revealed that PL + GEM resulted in significant changes in p53-responsive genes that play a role in cell death, cell cycle, oxidative stress, and DNA repair pathways. Cell culture assays confirmed PL + GEM results in elevated ROS levels, arrests the cell cycle in the G0/G1 phase, and induces PDAC cell death. We propose a mechanism for the complementary anti-tumor effects of PL and GEM in PDAC cells through elevation of ROS and transcription of cell cycle arrest and cell death-associated genes. Collectively, our results suggest that PL has potential to be combined with GEM to more effectively treat PDAC.