Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255979

RESUMO

Glaucoma is a complex and multifactorial disease defined as the loss of retinal ganglion cells (RGCs) and their axons. Besides an elevated intraocular pressure (IOP), other mechanisms play a pivotal role in glaucoma onset and progression. For example, it is known that excitotoxicity, immunological alterations, ischemia, and oxidative stress contribute to the neurodegeneration in glaucoma disease. To study these effects and to discover novel therapeutic approaches, appropriate animal models are needed. In this review, we focus on various glaucoma animal models beyond an elevated IOP. We introduce genetically modified mice, e.g., the optineurin E50K knock-in or the glutamate aspartate transporter (GLAST)-deficient mouse. Excitotoxicity can be mimicked by injecting the glutamate analogue N-methyl-D-aspartate intravitreally, which leads to rapid RGC degeneration. To explore the contribution of the immune system, the experimental autoimmune glaucoma model can serve as a useful tool. Here, immunization with antigens led to glaucoma-like damage. The ischemic mechanism can be mimicked by inducing a high IOP for a certain amount of time in rodents, followed by reperfusion. Thereby, damage to the retina and the optic nerve occurs rapidly after ischemia/reperfusion. Lastly, we discuss the importance of optic nerve crush models as model systems for normal-tension glaucoma. In summary, various glaucoma models beyond IOP increase can be utilized.


Assuntos
Glaucoma , Animais , Camundongos , Olho , Ácido Glutâmico , Modelos Animais , Isquemia
2.
Klin Monbl Augenheilkd ; 239(2): 169-176, 2022 Feb.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-35211939

RESUMO

Glaucoma, a multifactorial neurodegenerative disease, is the second most common cause of blindness. Since early diagnosis facilitates timely treatment, it is therefore essential to identify appropriate markers. In the future, so-called biomarkers could be helpful in early detection and follow-up. In glaucoma, these parameters could be obtained in the aqueous humour. Altered antibodies, proteins, microRNA (miRNA) and trace element levels have already been identified. This review provides insight into possible changes in the aqueous humour of patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) or pseudoexfoliation glaucoma (PEXG). Studies on antibody changes in POAG patients identified an upregulation of immune system associated antibodies such as heat shock protein (HSP) 27. HSP27 was also upregulated in PEXG patients but decreased in NTG. In POAG and PEXG samples, the levels of certain proteins, including interleukins and endothelin-1, were elevated. The vasoconstrictor endothelin-1 may play a role in regulating intraocular pressure. By contrast, proteins playing a role in the response to oxidative stress were downregulated. In NTG patients, proteins responsible for the elimination of toxic by-products from the respiratory chain were downregulated. In addition, the aqueous humour of POAG and PEXG patients contained several miRNAs that have been linked to tissue development, neurological disease and cellular organisation. Other miRNAs regulated in glaucoma play a role in extracellular matrix remodelling and thus may affect drainage resistance in the trabecular meshwork. It is also interesting to note that the aqueous humour of glaucoma patients showed changes in the levels of trace elements such as zinc and selenium. The elevated zinc levels could be responsible for the imbalance of intraocular matrix metalloproteinases and thus for increased intraocular pressure. All these studies demonstrate the complex changes in aqueous humour in glaucoma. Some of these biomarkers may be useful in the future for early diagnosis of the disease.


Assuntos
Síndrome de Exfoliação , Glaucoma de Ângulo Aberto , Doenças Neurodegenerativas , Humor Aquoso , Biomarcadores/metabolismo , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Pressão Intraocular
3.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419223

RESUMO

Heat shock protein 27 (HSP27) is one of the small molecular chaperones and is involved in many cell mechanisms. Besides the known protective and helpful functions of intracellular HSP27, very little is known about the mode of action of extracellular HSP27. In a previous study, we showed that intravitreal injection of HSP27 led to neuronal damage in the retina and optic nerve after 21 days. However, it was not clear which degenerative signaling pathways were induced by the injection. For this reason, the pathological mechanisms of intravitreal HSP27 injection after 14 days were investigated. Histological and RT-qPCR analyses revealed an increase in endogenous HSP27 in the retina and an activation of components of the intrinsic and extrinsic apoptosis pathway. In addition, an increase in nucleus factor-kappa-light-chain-enhancer of activated B cells (NFκB), as well as of microglia/macrophages and T-cells could be observed. In the optic nerve, however, only an increased apoptosis rate was detectable. Therefore, the activation of caspases and the induction of an incipient immune response seem to be the main triggers for retinal degeneration in this intravitreal HSP27 model.


Assuntos
Caspases/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Retina/metabolismo , Linfócitos T/metabolismo , Vias Visuais/metabolismo , Animais , Apoptose/genética , Caspases/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP27/administração & dosagem , Proteínas de Choque Térmico HSP27/genética , Injeções Intravítreas , Masculino , Nervo Óptico/metabolismo , Ratos Wistar
4.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671472

RESUMO

To reveal the pathomechanisms of glaucoma, a common cause of blindness, suitable animal models are needed. As previously shown, retinal ganglion cell and optic nerve degeneration occur in ßB1-CTGF mice. Here, we aimed to determine possible apoptotic mechanisms and degeneration of different retinal cells. Hence, retinae were processed for immunohistology (n = 5-9/group) and quantitative real-time PCR analysis (n = 5-7/group) in 5- and 10-week-old ßB1-CTGF and wildtype controls. We noted significantly more cleaved caspase 3+ cells in ßB1-CTGF retinae at 5 (p = 0.005) and 10 weeks (p = 0.02), and a significant upregulation of Casp3 and Bax/Bcl2 mRNA levels (p < 0.05). Furthermore, more terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL+) cells were detected in transgenic mice at 5 (p = 0.03) and 10 weeks (p = 0.02). Neurofilament H staining (p = 0.01) as well as Nefh (p = 0.02) and Tubb3 (p = 0.009) mRNA levels were significantly decreased at 10 weeks. GABAergic synapse intensity was lower at 5 weeks, while no alterations were noted at 10 weeks. The glutamatergic synapse intensity was decreased at 5 (p = 0.007) and 10 weeks (p = 0.01). No changes were observed for bipolar cells, photoreceptors, and macroglia. We conclude that apoptotic processes and synapse loss precede neuronal death in this model. This slow progression rate makes the ßB1-CTGF mice a suitable model to study primary open-angle glaucoma.


Assuntos
Apoptose , Fator de Crescimento do Tecido Conjuntivo/genética , Animais , Contagem de Células , Camundongos Transgênicos , Modelos Animais , Proteínas de Neurofilamentos/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Bipolares da Retina/patologia , Células Ganglionares da Retina/patologia , Sinapses/patologia
5.
Cell Tissue Res ; 382(2): 293-306, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32676862

RESUMO

Glaucoma is characterized by a progressive damage of the retina and the optic nerve. Despite a huge research interest, the exact pathomechanisms are still unknown. In the experimental autoimmune glaucoma model, rats develop glaucoma-like damage of the retina and the optic nerve after immunization with an optic nerve antigen homogenate (ONA). An early activation of the complement system, even before optic nerve degeneration, was reported in this model. Here, we investigated the effects of a monoclonal antibody against complement factor C5 on optic nerves. Rats were immunized with ONA and compared to controls. In one eye of some ONA animals, the antibody against C5 was intravitreally injected (15 µmol: ONA + C5-I or 25 µmol: ONA + C5-II) before immunization and then every 2 weeks. After 6 weeks, optic nerves were processed for histology (n = 6/group). These analyses demonstrated that the intravitreal therapy reduced the depositions of the membrane attack complex compared to ONA animals (ONA + C5-I: p = 0.005; ONA + C5-II: p = 0.002). Cellular infiltration was significantly reduced in the ONA + C5-I group (p = 0.003), but not in ONA + C5-II tissues (p = 0.41). Furthermore, SMI-32 staining revealed that neurofilament was preserved in both treatment groups compared to ONA optic nerves (both p = 0.002). A decreased amount of microglia was found in treated animals in comparison to the ONA group (ONA + C5-I: p = 0.03; ONA + C5-II: p = 0.009). We observed, for the first time, that a complement system inhibition could prevent optic nerve damage in an autoimmune glaucoma model. Therefore, complement inhibition could serve as a new therapeutic tool for glaucoma.


Assuntos
Inativadores do Complemento/uso terapêutico , Glaucoma/terapia , Nervo Óptico/fisiopatologia , Animais , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos Lew
6.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977518

RESUMO

Glaucoma is identified by an irreversible retinal ganglion cell (RGC) loss and optic nerve damage. Over the past few years, the immune system gained importance in its genesis. In a glaucoma-like animal model with intraocular S100B injection, RGC death occurs at 14 days. In an experimental autoimmune glaucoma model with systemic S100B immunization, a loss of RGCs is accompanied by a decreased synaptic signal at 28 days. Here, we aimed to study synaptic alterations in these two models. In one group, rats received a systemic S100B immunization (n = 7/group), while in the other group, S100B was injected intraocularly (n = 6-7/group). Both groups were compared to appropriate controls and investigated after 14 days. While inhibitory post-synapses remained unchanged in both models, excitatory post-synapses degenerated in animals with intraocular S100B injection (p = 0.03). Excitatory pre-synapses tendentially increased in animals with systemic S100B immunization (p = 0.08) and significantly decreased in intraocular ones (p = 0.04). Significantly more n-methyl-d-aspartate (NMDA) receptors (both p ≤ 0.04) as well as gamma-aminobutyric acid (GABA) receptors (both p < 0.03) were observed in S100B animals in both models. We assume that an upregulation of these receptors causes the interacting synapse types to degenerate. Heightened levels of excitatory pre-synapses could be explained by remodeling followed by degeneration.


Assuntos
Doenças Autoimunes/imunologia , Glaucoma/imunologia , Receptores de GABA/imunologia , Receptores de N-Metil-D-Aspartato/imunologia , Subunidade beta da Proteína Ligante de Cálcio S100/toxicidade , Sinapses/imunologia , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/patologia , Modelos Animais de Doenças , Glaucoma/induzido quimicamente , Glaucoma/patologia , Pressão Intraocular/efeitos dos fármacos , Masculino , Nervo Óptico/imunologia , Nervo Óptico/patologia , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Células Ganglionares da Retina/imunologia , Células Ganglionares da Retina/patologia , Subunidade beta da Proteína Ligante de Cálcio S100/imunologia , Sinapses/patologia
7.
Klin Monbl Augenheilkd ; 237(2): 143-149, 2020 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-31968372

RESUMO

In view of the aging members of our society, there will be an increase in severe visual impairment and blindness, also due to glaucoma, in the coming years. Therapy options are limited to treat occurring symptoms. Currently, only a deceleration of the pathogenesis progression, but no cure, is available. Therefore, it is necessary to develop new therapeutic strategies to treat glaucoma adequately and effectively, thus improving the quality of life of those affected. One possible approach seems to be primary neuroprotection, which acts independently of an intraocular pressure reduction. There are indications that components of the immune system play a role in the context of the disease or the loss of retinal ganglion cells. Thus, evidence of an involvement of heat shock proteins, the complement system, but also, for example, microglial cells, were found. To this end, therapeutic modulation of these factors seems to be an interesting new target for neuroprotection. Studies in animal models have shown that an inhibition of the complement system or microglia leads to a protection. Modulation of heat shock proteins may enhance their protective properties or inhibit their destroying function to prevent glaucoma damage. These neuroprotective substances could expand the treatment options of glaucoma patients in the future.


Assuntos
Glaucoma , Neuroproteção , Fármacos Neuroprotetores , Animais , Glaucoma/prevenção & controle , Glaucoma/terapia , Humanos , Qualidade de Vida , Células Ganglionares da Retina
8.
J Cell Mol Med ; 23(8): 5497-5507, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31144440

RESUMO

Primary open-angle glaucoma (POAG) is one of the most common causes for blindness worldwide. Although an elevated intraocular pressure (IOP) is the main risk factor, the exact pathology remained indistinguishable. Therefore, it is necessary to have appropriate models to investigate these mechanisms. Here, we analysed a transgenic glaucoma mouse model (ßB1-CTGF) to elucidate new possible mechanisms of the disease. Therefore, IOP was measured in ßB1-CTGF and wildtype mice at 5, 10 and 15 weeks of age. At 5 and 10 weeks, the IOP in both groups were comparable (P > 0.05). After 15 weeks, a significant elevated IOP was measured in ßB1-CTGF mice (P < 0.001). At 15 weeks, electroretinogram measurements were performed and both the a- and b-wave amplitudes were significantly decreased in ßB1-CTGF retinae (both P < 0.01). Significantly fewer Brn-3a+ retinal ganglion cells (RGCs) were observed in the ßB1-CTGF group on flatmounts (P = 0.02), cross-sections (P < 0.001) and also via quantitative real-time PCR (P = 0.02). Additionally, significantly more cleaved caspase 3+ RGCs were seen in the ßB1-CTGF group (P = 0.002). Furthermore, a decrease in recoverin+ cells was observable in the ßB1-CTGF animals (P = 0.004). Accordingly, a significant down-regulation of Recoverin mRNA levels were noted (P < 0.001). Gfap expression, on the other hand, was higher in ßB1-CTGF retinae (P = 0.023). Additionally, more glutamine synthetase signal was noted (P = 0.04). Although no alterations were observed regarding photoreceptors via immunohistology, a significant decrease of Rhodopsin (P = 0.003) and Opsin mRNA (P = 0.03) was noted. We therefore assume that the ßB1-CTGF mouse could serve as an excellent model for better understanding the pathomechanisms in POAG.


Assuntos
Glaucoma de Ângulo Aberto/patologia , Retina/patologia , Células Ganglionares da Retina/patologia , Animais , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Eletrorretinografia/métodos , Feminino , Glaucoma de Ângulo Aberto/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , RNA Mensageiro/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
9.
Mol Cell Neurosci ; 89: 95-106, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29738834

RESUMO

It is known that intravitreally injected N-methyl-d-aspartate (NMDA) leads to fast retina and optic nerve degeneration and can directly activate microglia. Here, we analyzed the relevance for microglia related degenerating factors, the proteins of the complement system, at a late stage in the NMDA damage model. Therefore, different doses of NMDA (0 (PBS), 20, 40, 80 nmol) were intravitreally injected in rat eyes. Proliferative and activated microglia/macrophages (MG/Mϕ) were found in retina and optic nerve 2 weeks after NMDA injection. All three complement pathway proteins were activated in retinas after 40 and 80 nmol NMDA treatment. 80 nmol NMDA injection also lead to more numerous depositions of complement factors C3 and membrane attack complex (MAC) in retina and MAC in optic nerve. Additionally, more MAC+ depositions were detected in optic nerves of the 40 nmol NMDA group. In this NMDA model, the retina is first affected followed by optic nerve damage. However, we found initiating complement processes in the retina, while more deposits of the terminal complex were present 2 weeks after NMDA injection in the optic nerve. The complement system can be activated in waves and possibly a second wave is still on-going in the retina, while the first activation wave is in the final phase in the optic nerve. Only the damaged tissues showed microglia activation as well as proliferation and an increase of complement proteins. Interestingly, the microglia/macrophages (MG/Mϕ) in this model were closely connected with the inductors of the classical and lectin pathway, but not with the alternative pathway. However, all three initiating complement pathways were upregulated in the retina. The alternative pathway seems to be triggered by other mechanisms in this NMDA model. Our study showed an ongoing interaction of microglia and complement proteins in a late stage of a degenerative process.


Assuntos
Proteínas do Sistema Complemento/imunologia , Microglia/imunologia , N-Metilaspartato/toxicidade , Nervo Óptico/imunologia , Retina/imunologia , Animais , Masculino , Microglia/efeitos dos fármacos , Nervo Óptico/citologia , Nervo Óptico/efeitos dos fármacos , Ratos , Ratos Wistar , Retina/citologia , Retina/efeitos dos fármacos
10.
Int J Mol Sci ; 20(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635205

RESUMO

Glaucoma, one of the most common causes of blindness worldwide, is a multifactorial neurodegenerative disease characterized by damage of retinal ganglion cells and optic nerve degeneration. However, the exact mechanism leading to glaucoma is still not understood. Evidences suggest an immunological involvement in the pathogenesis. Among other immune responses, altered autoantibody patterns were found in glaucoma patients. Especially elevated antibody levels against heat shock proteins (HSPs), like HSP27 or HSP60, were identified. In an animal model, an immunization with these HSPs induced a pressure-independent retinal ganglion cell degeneration and axon loss, hence mimicking glaucoma-like damage. In addition, development of autoreactive antibodies, as well as a glia and T-cell activation, were described in these animals. Recently, we noted that intravitreal HSP27 injection likewise led to a degeneration of retinal ganglion cells and their axons. Therefore, HSP27 might have a direct damaging effect on retinal cells, and might play a key role in glaucoma.


Assuntos
Suscetibilidade a Doenças , Glaucoma/etiologia , Glaucoma/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Animais , Biomarcadores , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Família Multigênica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa