Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055214

RESUMO

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Assuntos
Proteínas de Ligação ao Cálcio , Doenças Mitocondriais , Proteínas de Ligação ao Cálcio/genética , Homeostase/genética , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Sistema Nervoso/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
J Hepatol ; 77(6): 1619-1630, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985549

RESUMO

BACKGROUND & AIMS: Surgical resection of the cancerous tissue represents one of the few curative treatment options for neoplastic liver disease. Such partial hepatectomy (PHx) induces hepatocyte hyperplasia, which restores liver function. PHx is associated with bacterial translocation, leading to an immediate immune response involving neutrophils and macrophages, which are indispensable for the priming phase of liver regeneration. Additionally, PHx induces longer-lasting intrahepatic apoptosis. Herein, we investigated the effect of apoptotic extracellular vesicles (aEVs) on neutrophil function and their role in this later phase of liver regeneration. METHODS: A total of 124 patients undergoing PHx were included in this study. Blood levels of the apoptosis marker caspase-cleaved cytokeratin-18 (M30) and circulating aEVs were analyzed preoperatively and on the first and fifth postoperative days. Additionally, the in vitro effects of aEVs on the secretome, phenotype and functions of neutrophils were investigated. RESULTS: Circulating aEVs increased at the first postoperative day and were associated with higher concentrations of M30, which was only observed in patients with complete liver recovery. Efferocytosis of aEVs by neutrophils induced an activated phenotype (CD11bhighCD16highCD66bhighCD62Llow); however, classical inflammatory responses such as NETosis, respiratory burst, degranulation, or secretion of pro-inflammatory cytokines were not observed. Instead, efferocytosing neutrophils released various growth factors including fibroblast growth factor-2 and hepatocyte growth factor (HGF). Accordingly, we observed an increase of HGF-positive neutrophils after PHx and a correlation of plasma HGF with M30 levels. CONCLUSIONS: These data suggest that the clearance of PHx-induced aEVs leads to a population of non-inflammatory but regenerative neutrophils, which may support human liver regeneration. LAY SUMMARY: In this study, we show that the surgical removal of a diseased part of the liver triggers a specific type of programmed cell death in the residual liver tissue. This results in the release of vesicles from dying cells into the blood, where they are cleared by circulating immune cells. These respond by secreting hepatocyte growth factors that could potentially support the regeneration of the liver remnant.


Assuntos
Vesículas Extracelulares , Hiperplasia Nodular Focal do Fígado , Humanos , Hepatectomia , Neutrófilos , Transporte Biológico , Regeneração Hepática
3.
New Phytol ; 232(6): 2457-2474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34196001

RESUMO

Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.


Assuntos
Fagus , Micorrizas , Carbono , Nitrogênio , Raízes de Plantas
4.
Acta Derm Venereol ; 101(1): adv00367, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33349888

RESUMO

Cathelicidins have been reported to inhibit human papillomavirus infection in vitro; however, nothing is known about their activity in vivo. In this study, experimental skin infection with Mus musculus papillomavirus 1 resulted in robust development of cutaneous papillomas in cyclosporine A-treated C57BL/6J mice deficient for the murine cathelicidin-related antimicrobial peptide (CRAMP), in contrast to wild-type controls. Analysis of the underlying mechanisms revealed moderate disruption of virion integrity and lack of interference with viral entry and intracellular trafficking by a synthetic CRAMP peptide. Differences in the immune response to Mus musculus papillomavirus 1 infection were observed between CRAMP-deficient and wild-type mice. These included a stronger reduction in CD4+ and CD8+ T-cell numbers in infected skin, and lack of Mus musculus papillomavirus 1-specific neutralizing antibodies in response to cyclosporine A in the absence of endogenous CRAMP. CRAMP has modest direct anti-papillomaviral effects in vitro, but exerts protective functions against Mus musculus papillomavirus 1 skin infection and disease development in vivo, primarily by modulation of cellular and humoral immunity.


Assuntos
Papiloma , Papillomaviridae , Animais , Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Camundongos , Camundongos Endogâmicos C57BL , Papiloma/induzido quimicamente , Papillomaviridae/genética
5.
Angew Chem Int Ed Engl ; 60(10): 5063-5068, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369073

RESUMO

The ruthenium-based anticancer agent BOLD-100/KP1339 has shown promising results in several in vitro and in vivo tumour models as well as in early clinical trials. However, its mode of action remains to be fully elucidated. Recent evidence identified stress induction in the endoplasmic reticulum (ER) and concomitant down-modulation of HSPA5 (GRP78) as key drug effects. By exploiting the naturally formed adduct between BOLD-100 and human serum albumin as an immobilization strategy, we were able to perform target-profiling experiments that revealed the ribosomal proteins RPL10, RPL24, and the transcription factor GTF2I as potential interactors of this ruthenium(III) anticancer agent. Integrating these findings with proteomic profiling and transcriptomic experiments supported ribosomal disturbance and concomitant induction of ER stress. The formation of polyribosomes and ER swelling of treated cancer cells revealed by TEM validated this finding. Thus, the direct interaction of BOLD-100 with ribosomal proteins seems to accompany ER stress-induction and modulation of GRP78 in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Proteína Ribossômica L10/metabolismo , Proteínas Ribossômicas/metabolismo , Antineoplásicos/química , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células HCT116 , Humanos , Compostos Organometálicos/química , Polirribossomos/metabolismo , Rutênio/química , Fatores de Transcrição TFII/metabolismo , Transcriptoma
6.
J Cell Sci ; 128(22): 4138-50, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26519478

RESUMO

Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility. Plectin-deficient endothelial cell layers were more leaky and showed reduced mechanical resilience in fluid-shear stress and mechanical stretch experiments. We suggest that the distorted AJs and upregulated actin stress fibres in plectin-deficient cells are rooted in perturbations of the vimentin cytoskeleton, as similar phenotypes could be mimicked in wild-type cells by disruption of vimentin filaments. In vivo studies in endothelium-restricted conditional plectin-knockout mice revealed significant distortions of AJs in stress-prone aortic arch regions and increased pulmonary vascular leakage. Our study opens a new perspective on cytoskeleton-controlled vascular permeability, where a plectin-organized vimentin scaffold keeps actomyosin contractility 'in-check' and maintains AJ homeostasis.


Assuntos
Actinas/metabolismo , Células Endoteliais/metabolismo , Plectina/metabolismo , Vimentina/metabolismo , Animais , Permeabilidade Capilar , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plectina/genética , Estresse Mecânico
7.
PLoS Genet ; 7(12): e1002396, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22144912

RESUMO

Autosomal recessive mutations in the cytolinker protein plectin account for the multisystem disorders epidermolysis bullosa simplex (EBS) associated with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and congenital myasthenia (EBS-CMS). In contrast, a dominant missense mutation leads to the disease EBS-Ogna, manifesting exclusively as skin fragility. We have exploited this trait to study the molecular basis of hemidesmosome failure in EBS-Ogna and to reveal the contribution of plectin to hemidesmosome homeostasis. We generated EBS-Ogna knock-in mice mimicking the human phenotype and show that blistering reflects insufficient protein levels of the hemidesmosome-associated plectin isoform 1a. We found that plectin 1a, in contrast to plectin 1c, the major isoform expressed in epidermal keratinocytes, is proteolytically degraded, supporting the notion that degradation of hemidesmosome-anchored plectin is spatially controlled. Using recombinant proteins, we show that the mutation renders plectin's 190-nm-long coiled-coil rod domain more vulnerable to cleavage by calpains and other proteases activated in the epidermis but not in skeletal muscle. Accordingly, treatment of cultured EBS-Ogna keratinocytes as well as of EBS-Ogna mouse skin with calpain inhibitors resulted in increased plectin 1a protein expression levels. Moreover, we report that plectin's rod domain forms dimeric structures that can further associate laterally into remarkably stable (paracrystalline) polymers. We propose focal self-association of plectin molecules as a novel mechanism contributing to hemidesmosome homeostasis and stabilization.


Assuntos
Vesícula/genética , Epidermólise Bolhosa Simples/genética , Hemidesmossomos/metabolismo , Plectina/genética , Animais , Calpaína/antagonistas & inibidores , Calpaína/efeitos dos fármacos , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Células Epidérmicas , Epiderme/metabolismo , Epiderme/ultraestrutura , Expressão Gênica , Técnicas de Introdução de Genes , Hemidesmossomos/química , Hemidesmossomos/genética , Hemidesmossomos/ultraestrutura , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Camundongos , Células Musculares/citologia , Células Musculares/metabolismo , Mutação de Sentido Incorreto/genética , Plectina/química , Plectina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Nat Commun ; 15(1): 3307, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658525

RESUMO

Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.


Assuntos
Genoma Viral , Vírus Gigantes , Naegleria , Genoma Viral/genética , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/ultraestrutura , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/fisiologia , Naegleria/genética , Naegleria/virologia , Naegleria fowleri/genética , Naegleria fowleri/isolamento & purificação , Filogenia , Humanos
9.
Traffic ; 12(11): 1575-91, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21801288

RESUMO

The Sec24 subunit of the coat protein complex II (COPII) has been implicated in selecting newly synthesized cargo from the endoplasmic reticulum (ER) for delivery to the Golgi. The protozoan parasite, Trypanosoma brucei, contains two paralogs, TbSec24.1 and TbSec24.2, which were depleted using RNA interference in the insect form of the parasite. Depletion of either TbSec24.1 or TbSec24.2 resulted in growth arrest and modest inhibition of anterograde transport of the putative Golgi enzyme, TbGntB, and the secretory marker, BiPNAVRG-HA9. In contrast, depletion of TbSec24.1, but not TbSec24.2, led to reversible mislocalization of the Golgi stack proteins, TbGRASP and TbGolgin63. The latter accumulated in the ER. The localization of the COPI coatomer subunit, TbεCOP, and the trans Golgi network (TGN) protein, TbGRIP70, was largely unaffected, although the latter was preferentially lost from those Golgi that were not associated with the bilobe, a structure previously implicated in Golgi biogenesis. Together, these data suggest that TbSec24 paralogs can differentiate among proteins destined for the Golgi.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes/métodos , Isoformas de Proteínas , Subunidades Proteicas , Transporte Proteico , Rede trans-Golgi/fisiologia
10.
ACS Omega ; 8(2): 2213-2226, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687051

RESUMO

The secretion of extracellular vesicles and particles (EVPs) is an important mechanism of cellular communication. In this work, we demonstrate a functional role of EVPs in mechanisms regulating gastric acid secretion. HGT-1 cells were used as a model system to assess proton secretion. First, in order to prove EVP secretion by HGT-1 cells, EVPs were isolated by size exclusion chromatography and characterized by nanoparticle tracking analysis, Western blot, and cryo transmission electron microscopy. For examination of the potential role of EVPs in proton secretion, HGT-1 cells were treated with pharmacological EV-inhibitors, resulting in a reduction of histamine-induced proton secretion. To demonstrate the functional role of EVPs in the mechanism of proton secretion, EVP-conditioned supernatant was collected after stimulation of HGT-1 cells with histamine, fractionated, and subjected to an activity screening. The results revealed constituents of the HGT-1-derived secretome with an MW of >100 kDa (including EVPs) to modulate proton secretion, while smaller constituents had no effect. Finally, a dose-dependent modulatory effect on proton secretion of HGT-1 cells was demonstrated by isolated HGT-1-derived EVPs. Hence, this study presents first results on the potential function of EVPs as a previously undiscovered mechanism of regulation of gastric acid secretion by parietal cells.

11.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068675

RESUMO

(1) Background: Lichens, as an important part of the terrestrial ecosystem, attract the attention of various research disciplines. To elucidate their ultrastructure, transmission electron microscopy of resin-embedded samples is indispensable. Since most observations of lichen samples are generated via chemical fixation and processing at room temperature, they lack the rapid immobilization of live processes and are prone to preparation artefacts. To improve their preservation, cryoprocessing was tested in the past, but never widely implemented, not least because of an extremely lengthy protocol. (2) Methods: Here, we introduce an accelerated automated freeze substitution protocol with continuous agitation. Using the example of three lichen species, we demonstrate the preservation of the native state of algal photobionts and mycobionts in association with their extracellular matrix. (3) Results: We bring to attention the extent and the structural variability of the hyphae, the extracellular matrix and numerous crystallized metabolites. Our findings will encourage studies on transformation processes related to the compartmentation of lichen thalli. They include cryopreserved aspects of algal photobionts and observations of putative physiological relevance, such as the arrangement of numerous mitochondria within chloroplast pockets. (4) Conclusions: In summary, we present accelerated freeze substitution as a very useful tool for systematic studies of lichen ultrastructures.

12.
Biochim Biophys Acta ; 1808(4): 1108-19, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21223946

RESUMO

Under conditions of environmental stress, the plasma membrane is involved in several regulatory processes to promote cell survival, like maintenance of signaling pathways, cell wall organization and intracellular ion homeostasis. PUN1 encodes a plasma membrane protein localizing to the ergosterol-rich membrane compartment occupied also by the arginine permease Can1. We found that the PUN1 (YLR414c) gene is transcriptionally induced upon metal ion stress. Northern blot analysis of the transcriptional regulation of PUN1 showed that the calcium dependent transcription factor Crz1p is required for PUN1 induction upon heavy metal stress. Here we report that mutants deleted for PUN1 exhibit increased metal ion sensitivity and morphological abnormalities. Microscopical and ultrastructural observations revealed a severe cell wall defect of pun1∆ mutants. By using chemical cross-linking, Blue native electrophoresis, and co-immunoprecipitation we found that Pun1p forms homo-oligomeric protein complexes. We propose that Pun1p is a stress-regulated factor required for cell wall integrity, thereby expanding the functional significance of lateral plasma membrane compartments.


Assuntos
Calcineurina/metabolismo , Parede Celular/metabolismo , Proteínas de Membrana/metabolismo , Metais Pesados/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Northern Blotting , Calcineurina/genética , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Íons/farmacologia , Proteínas de Membrana/genética , Microscopia Eletrônica , Microscopia de Fluorescência , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Biochim Biophys Acta ; 1808(10): 2581-90, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21718688

RESUMO

Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides-in particular a CAMP with Lysine-Leucine-Lysine repeats (termed KLK)-affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents.


Assuntos
Lipídeos de Membrana/química , Proteínas de Membrana/química , Ácido N-Acetilneuramínico/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Cátions , Células Cultivadas , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência
14.
Hum Mol Genet ; 19(6): 987-1000, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026556

RESUMO

Human Wolf-Hirschhorn syndrome (WHS) is a multigenic disorder resulting from a hemizygous deletion on chromosome 4. LETM1 is the best candidate gene for seizures, the strongest haploinsufficiency phenotype of WHS patients. Here, we identify the Drosophila gene CG4589 as the ortholog of LETM1 and name the gene DmLETM1. Using RNA interference approaches in both Drosophila melanogaster cultured cells and the adult fly, we have assayed the effects of down-regulating the LETM1 gene on mitochondrial function. We also show that DmLETM1 complements growth and mitochondrial K(+)/H(+) exchange (KHE) activity in yeast deficient for LETM1. Genetic studies allowing the conditional inactivation of LETM1 function in specific tissues demonstrate that the depletion of DmLETM1 results in roughening of the adult eye, mitochondrial swelling and developmental lethality in third-instar larvae, possibly the result of deregulated mitophagy. Neuronal specific down-regulation of DmLETM1 results in impairment of locomotor behavior in the fly and reduced synaptic neurotransmitter release. Taken together our results demonstrate the function of DmLETM1 as a mitochondrial osmoregulator through its KHE activity and uncover a pathophysiological WHS phenotype in the model organism D. melanogaster.


Assuntos
Antiporters/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutação/genética , Convulsões/complicações , Convulsões/genética , Síndrome de Wolf-Hirschhorn/complicações , Síndrome de Wolf-Hirschhorn/genética , Sequência de Aminoácidos , Animais , Antiporters/química , Antiporters/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Regulação para Baixo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/ultraestrutura , Olho/patologia , Olho/ultraestrutura , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Atividade Motora/fisiologia , Sistema Nervoso/patologia , Sistema Nervoso/fisiopatologia , Sistema Nervoso/ultraestrutura , Neurotransmissores/metabolismo , Especificidade de Órgãos , Interferência de RNA , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Sinapses/metabolismo , Sinapses/ultraestrutura
15.
J Cell Biol ; 176(7): 965-77, 2007 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17389230

RESUMO

In skeletal muscle, the cytolinker plectin is prominently expressed at Z-disks and the sarcolemma. Alternative splicing of plectin transcripts gives rise to more than eight protein isoforms differing only in small N-terminal sequences (5-180 residues), four of which (plectins 1, 1b, 1d, and 1f) are found at substantial levels in muscle tissue. Using plectin isoform-specific antibodies and isoform expression constructs, we show the differential regulation of plectin isoforms during myotube differentiation and their localization to different compartments of muscle fibers, identifying plectins 1 and 1f as sarcolemma-associated isoforms, whereas plectin 1d localizes exclusively to Z-disks. Coimmunoprecipitation and in vitro binding assays using recombinant protein fragments revealed the direct binding of plectin to dystrophin (utrophin) and beta-dystroglycan, the key components of the dystrophin-glycoprotein complex. We propose a model in which plectin acts as a universal mediator of desmin intermediate filament anchorage at the sarcolemma and Z-disks. It also explains the plectin phenotype observed in dystrophic skeletal muscle of mdx mice and Duchenne muscular dystrophy patients.


Assuntos
Distroglicanas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Plectina/metabolismo , Sarcolema/metabolismo , Animais , Compartimento Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Desmina/metabolismo , Humanos , Imuno-Histoquímica , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Modelos Biológicos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia , Plectina/imunologia , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Ratos , Sarcolema/patologia , Sarcolema/ultraestrutura , Utrofina/metabolismo
16.
J Biol Chem ; 285(19): 14399-414, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20197279

RESUMO

Defects of the mitochondrial K(+)/H(+) exchanger (KHE) result in increased matrix K(+) content, swelling, and autophagic decay of the organelle. We have previously identified the yeast Mdm38 and its human homologue LETM1, the candidate gene for seizures in Wolf-Hirschhorn syndrome, as essential components of the KHE. In a genome-wide screen for multicopy suppressors of the pet(-) (reduced growth on nonfermentable substrate) phenotype of mdm38Delta mutants, we now characterized the mitochondrial carriers PIC2 and MRS3 as moderate suppressors and MRS7 and YDL183c as strong suppressors. Like Mdm38p, Mrs7p and Ydl183cp are mitochondrial inner membrane proteins and constituents of approximately 500-kDa protein complexes. Triple mutant strains (mdm38Delta mrs7Delta ydl183cDelta) exhibit a remarkably stronger pet(-) phenotype than mdm38Delta and a general growth reduction. They totally lack KHE activity, show a dramatic drop of mitochondrial membrane potential, and heavy fragmentation of mitochondria and vacuoles. Nigericin, an ionophore with KHE activity, fully restores growth of the triple mutant, indicating that loss of KHE activity is the underlying cause of its phenotype. Mdm38p or overexpression of Mrs7p, Ydl183cp, or LETM1 in the triple mutant rescues growth and KHE activity. A LETM1 human homologue, HCCR-1/LETMD1, described as an oncogene, partially suppresses the yeast triple mutant phenotype. Based on these results, we propose that Ydl183p and the Mdm38p homologues Mrs7p, LETM1, and HCCR-1 are involved in the formation of an active KHE system.


Assuntos
Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Cromatografia de Afinidade , Deleção de Genes , Genoma Fúngico , Humanos , Imunoprecipitação , Potencial da Membrana Mitocondrial , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética
17.
Microbiology (Reading) ; 157(Pt 7): 1897-1909, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21474534

RESUMO

The streptococcal protein required for cell separation B (PcsB) is predicted to play an important role in peptidoglycan metabolism, based on sequence motifs and altered phenotypes of gene deletion mutant cells exhibiting defects in cell separation. However, no enzymic activity has been demonstrated for PcsB so far. By generating gene deletion mutant strains in four different genetic backgrounds we could demonstrate that pcsB is not essential for cell survival in Streptococcus pneumoniae, but is essential for proper cell division. Deletion mutant cells displayed cluster formation due to aberrant cell division, reduced growth and antibiotic sensitivity that were fully reverted by transformation with a plasmid carrying pcsB. Immunofluorescence staining revealed that PcsB was localized to the cell poles, similarly to PBP3 and LytB, enzymes with demonstrated peptidoglycan-degrading activity required for daughter cell separation. Similarly to other studies with PcsB homologues, we could not detect peptidoglycan-lytic activity with recombinant or native pneumococcal PcsB in vitro. In addition to defects in septum placement and separation, the absence of PcsB induced an increased release of several proteins, such as enolase, MalX and the SP0107 LysM domain protein. Interestingly, genes encoding both LysM domain-containing proteins that are present in the pneumococcal genome (SP0107 and SP2063) and predicted to be involved in cell wall metabolism were found to be highly overexpressed (14-33-fold increase) in ΔpcsB cells in two different genetic backgrounds. Otherwise, we detected very few changes in the global gene expression profile of cells lacking PcsB. Thus our data suggest that LysM domain proteins partially compensate for the lack of PcsB function and allow the survival and slow growth of the pneumococcus.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Streptococcus pneumoniae/metabolismo , Divisão Celular/fisiologia , Citometria de Fluxo , Imunofluorescência , Deleção de Genes , RNA Mensageiro/biossíntese , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética
18.
J Cell Biol ; 174(4): 557-68, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16908671

RESUMO

Plectin is a major intermediate filament (IF)-based cytolinker protein that stabilizes cells and tissues mechanically, regulates actin filament dynamics, and serves as a scaffolding platform for signaling molecules. In this study, we show that plectin deficiency is a cause of aberrant keratin cytoskeleton organization caused by a lack of orthogonal IF cross-linking. Keratin networks in plectin-deficient cells were more susceptible to osmotic shock-induced retraction from peripheral areas, and their okadaic acid-induced disruption (paralleled by stress-activated MAP kinase p38 activation) proceeded faster. Basal activities of the MAP kinase Erk1/2 and of the membrane-associated upstream protein kinases c-Src and PKCdelta were significantly elevated, and increased migration rates, as assessed by in vitro wound-closure assays and time-lapse microscopy, were observed. Forced expression of RACK1, which is the plectin-binding receptor protein for activated PKCdelta, in wild-type keratinocytes elevated their migration potential close to that of plectin-null cells. These data establish a link between cytolinker-controlled cytoarchitecture/scaffolding functions of keratin IFs and specific MAP kinase cascades mediating distinct cellular responses.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Plaquinas/metabolismo , Plectina/metabolismo , Animais , Movimento Celular/fisiologia , Citoesqueleto/ultraestrutura , Inibidores Enzimáticos/farmacologia , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuropeptídeos/efeitos dos fármacos , Neuropeptídeos/metabolismo , Ácido Okadáico/farmacologia , Pressão Osmótica , Plaquinas/genética , Plectina/genética , Proteína Quinase C-delta/efeitos dos fármacos , Proteína Quinase C-delta/metabolismo , Receptores de Quinase C Ativada , Estresse Fisiológico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/efeitos dos fármacos , Quinases da Família src/metabolismo
19.
Nanoscale Adv ; 3(1): 249-262, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36131874

RESUMO

Oxaliplatin shows a superior clinical activity in colorectal cancer compared to cisplatin. Nevertheless, the knowledge about its cellular distribution and the mechanisms responsible for the different range of oxaliplatin-responsive tumors is far from complete. In this study, we combined highly sensitive element specific and isotope selective imaging by nanometer-scale secondary ion mass spectrometry (NanoSIMS) with transmission electron microscopy to investigate the subcellular accumulation of oxaliplatin in three human colon cancer cell lines (SW480, HCT116 wt, HCT116 OxR). Oxaliplatin bearing dual stable isotope labeled moieties, i.e. 2H-labeled diaminocyclohexane (DACH) and 13C-labeled oxalate, were applied for comparative analysis of the subcellular distribution patterns of the central metal and the ligands. In all the investigated cell lines, oxaliplatin was found to have a pronounced tendency for cytoplasmic aggregation in single membrane bound organelles, presumably related to various stages of the endocytic pathway. Moreover, nuclear structures, heterochromatin and in particular nucleoli, were affected by platinum-drug exposure. In order to explore the consequences of oxaliplatin resistance, subcellular drug distribution patterns were investigated in a pair of isogenic malignant cell lines with distinct levels of drug sensitivity (HCT116 wt and HCT116 OxR, the latter with acquired resistance to oxaliplatin). The subcellular platinum distribution was found to be similar in both cell lines, with only slightly higher accumulation in the sensitive HCT116 wt cells which is inconsistent with the resistance factor of more than 20-fold. Instead, the isotopic analysis revealed a disproportionally high accumulation of the oxalate ligand in the resistant cell line.

20.
mSystems ; 6(3): e0118620, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34058098

RESUMO

Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on "Candidatus Thiosymbion oneisti." Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that "Ca. T. oneisti" may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of "Candidatus Thiosymbion oneisti," a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa