RESUMO
PURPOSE: Brain herniation into arachnoid granulations (BHAG) of the dural venous sinuses is a recently described finding of uncertain etiology. The purpose of this study was to investigate the prevalence of BHAG in a cohort of patients with pulsatile tinnitus (PT) and to clarify the physiologic and clinical implications of these lesions. METHODS: The imaging and charts of consecutive PT patients were retrospectively reviewed. All patients were examined with MRI including pre- and post-contrast T1- and T2-weighted sequences. Images were reviewed separately by three blinded neuroradiologists to identify the presence of BHAG. Their location, signal intensity, size, presence of arachnoid granulation, and associated dural venous sinus stenosis were documented. Clinical records were further reviewed for idiopathic intracranial hypertension, history of prior lumbar puncture, and opening pressure. RESULTS: Two hundred sixty-two consecutive PT patients over a 4-year period met inclusion criteria. PT patients with BHAG were significantly more likely to have idiopathic intracranial hypertension than PT patients without BHAG (OR 4.2, CI 1.5-12, p = 0.006). Sixteen out of 262 (6%) patients were found to have 18 BHAG. Eleven out of 16 (69%) patients had unilateral temporal or occipital lobe herniations located in the transverse sinus or the transverse-sigmoid junction. Three out of 16 (19%) patients had unilateral cerebellar herniations and 2/16 (13%) patients had bilateral BHAG. CONCLUSION: In patients with PT, BHAG is a prevalent MRI finding that is strongly associated with the clinical diagnosis of IIH. The pathogenesis of BHAG remains uncertain, but recognition should prompt comprehensive evaluation for IIH.
Assuntos
Encefalopatias , Hipertensão Intracraniana , Pseudotumor Cerebral , Zumbido , Aracnoide-Máter/diagnóstico por imagem , Aracnoide-Máter/patologia , Encéfalo/patologia , Encefalopatias/patologia , Cavidades Cranianas/diagnóstico por imagem , Cavidades Cranianas/patologia , Encefalocele/complicações , Encefalocele/diagnóstico por imagem , Encefalocele/epidemiologia , Humanos , Hipertensão Intracraniana/complicações , Prevalência , Pseudotumor Cerebral/complicações , Pseudotumor Cerebral/diagnóstico por imagem , Pseudotumor Cerebral/patologia , Estudos Retrospectivos , Zumbido/patologiaRESUMO
We have previously demonstrated cross-sectional differences in magnetic resonance imaging (MRI) measurements of white matter myelin and gray matter in infants with or without the apolipoprotein ε4 allele, a major genetic risk factor for late-onset Alzheimer's disease (AD). In this study, we sought to compare longitudinal MRI white matter myelin and cognitive-behavioral changes in infants and young children with and without this allele. Serial MRI and cognitive tests were obtained on 223 infants and young children, including 74 ε4 carriers and 149 non-carriers, 2-68 months of age, matched for age, gestational duration, birth weight, sex ratio, maternal age, education, and socioeconomic status. Automated brain mapping algorithms and non-linear mixed models were used to characterize and compare trajectories of white matter myelin and cognitive-behavioral test scores. The APOE ε4 carriers had statistically significant differences in white matter myelin development, in the uncinate fasciculus, temporal lobe, internal capsule and occipital lobe. Additionally, ε4 carriers had a slightly greater rate of development in early learning composite a surrogate measure of IQ representative of expressive language, receptive language, fine motor, and visual skills, but displayed slightly lower non verbal development quotient scores a composite measure of fine motor and visual skills across the entire age range. This study supports the possibility that ε4 carriers have slightly altered rates of white matter and cognitive development in childhood. It continues to raise questions about the role of APOE in human brain development and the relevance of these developmental differences to the predisposition to AD.
Assuntos
Apolipoproteína E4/genética , Cognição/fisiologia , Bainha de Mielina/genética , Substância Branca/patologia , Envelhecimento/genética , Alelos , Encéfalo/patologia , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Bainha de Mielina/metabolismo , Rede Nervosa/patologia , Rede Nervosa/fisiopatologiaRESUMO
Cortical maturation, including age-related changes in thickness, volume, surface area, and folding (gyrification), play a central role in developing brain function and plasticity. Further, abnormal cortical maturation is a suspected substrate in various behavioral, intellectual, and psychiatric disorders. However, in order to characterize the altered development associated with these disorders, appreciation of the normative patterns of cortical development in neurotypical children between 1 and 6 years of age, a period of peak brain development during which many behavioral and developmental disorders emerge, is necessary. To this end, we examined measures of cortical thickness, surface area, mean curvature, and gray matter volume across 34 bilateral regions in a cohort of 140 healthy children devoid of major risk factors for abnormal development. From these data, we observed linear, logarithmic, and quadratic patterns of change with age depending on brain region. Cortical thinning, ranging from 10% to 20%, was observed throughout most of the brain, with the exception of posterior brain structures, which showed initial cortical thinning from 1 to 5 years, followed by thickening. Cortical surface area expansion ranged from 20% to 108%, and cortical curvature varied by 1-20% across the investigated age range. Right-left hemisphere asymmetry was observed across development for each of the 4 cortical measures. Our results present new insight into the normative patterns of cortical development across an important but under studied developmental window, and provide a valuable reference to which trajectories observed in neurodevelopmental disorders may be compared.
Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Mapeamento Encefálico , Criança , Desenvolvimento Infantil , Pré-Escolar , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Caracteres SexuaisRESUMO
Cortical development and white matter myelination are hallmark processes of infant and child neurodevelopment, and play a central role in the evolution of cognitive and behavioral functioning. Non-invasive magnetic resonance imaging (MRI) has been used to independently track these microstructural and morphological changes in vivo, however few studies have investigated the relationship between them despite their concurrency in the developing brain. Further, because measures of cortical morphology rely on underlying gray-white matter tissue contrast, which itself is a function of white matter myelination, it is unclear if contrast-based measures of cortical development accurately reflect cortical architecture, or if they merely represent adjacent white matter maturation. This may be particularly true in young children, in whom brain structure is rapidly maturing. Here for the first time, we investigate the dynamic relationship between cortical and white matter development across early childhood, from 1 to 6years. We present measurements of cortical thickness with respect to cortical and adjacent myelin water fraction (MWF) in 33 bilateral cortical regions. Significant results in only 14 of 66 (21%) cortical regions suggest that cortical thickness measures are not heavily driven by changes in adjacent white matter, and that brain imaging studies of cortical and white matter maturation reflect distinct, but complimentary, neurodevelopmental processes.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Bainha de Mielina/fisiologia , Substância Branca/crescimento & desenvolvimento , Criança , Pré-Escolar , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Lactente , Imageamento por Ressonância Magnética , MasculinoRESUMO
The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Bainha de Mielina/fisiologia , Água Corporal/metabolismo , Mapeamento Encefálico , Criança , Pré-Escolar , Cognição/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/anatomia & histologia , Córtex Motor/crescimento & desenvolvimento , Caracteres Sexuais , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Visual/anatomia & histologia , Córtex Visual/crescimento & desenvolvimentoRESUMO
Pulsatile tinnitus (PT) can be a debilitating condition characterized by rhythmic, heartbeat-synchronous sounds, which can severely impact patients' quality of life. Understanding the neuroanatomical changes in PT patients may provide critical insights into the impacts of this condition. This study aimed to investigate potential differences in cortical and subcortical brain volume between adults with PT and age-matched controls (60 to 70 years of age). A retrospective, cross-sectional analysis of imaging and medical records was conducted, with data collected from January 2015 to December 2021. The study was conducted in a tertiary referral center with a specialized tinnitus clinic. A total of 135 adults diagnosed with PT and 135 age-matched controls were included. All participants were screened for PT and relevant medical history, with consecutive sampling used for selection. Cortical and subcortical brain volume differences between PT patients and controls were measured using Freesurfer. PT patients (n = 79, after exclusion of patients with inadequate imaging data) exhibited significant decreases in cortical thickness in the anterior cingulate and entorhinal cortex, and decreased volume in the left putamen, compared to age-matched controls (n = 135). PT patients also demonstrated significant increased volume in frontal and occipital lobe structures, the cerebellum, hippocampi, and ventral pallidum. In conclusion, our findings suggest that individuals with PT may have structural differences in brain regions related to auditory processing, and depression, which provides additional evidence of the psychiatric sequalae of PT. These findings demonstrate that there are neuroanatomical alterations in patients with PT, emphasizing the value in evaluating and treating this disease to prevent these neuroanatomical differences from developing.