Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531138

RESUMO

The microalgae-based wastewater treatment is a promising technique that contribute to achieving sustainable development goals (SDGs), such as SDG-6, "Clean Water and Sanitation". However, it is strongly influenced by the initial composition of wastewater. In this study, the impact of initial organics and nutrient concentration on the removal of total organic carbon (TOC), total carbon (TC), ammonium (NH4+), total nitrogen (TN), and phosphate (PO43-) from greywater using native polyculture microalgae was explored. Response surface methodology was employed along with two machine learning approaches, AdaBoost and XGBoost, to evaluate the interactions among three main factors: TOC, NH4+, and PO43-, and their effects on treatment efficiency. The C/N ratios for achieving maximum TOC and TC removal efficiency of 99.2% and 97.7% were determined to be 10.3, and 65.4-73.6, respectively. Notably, the N/P ratio did not significantly affect their removal. The highest NH4+ removal efficiency, reaching 96.2%, was attained at C/N ratios of 4.3, 24.0, 38.2, and 212.9, coupled with N/P ratios of 0.3, 2.6, and 23.4. Highest TN removal efficiency of 77.2% was achieved at C/N and N/P ratios of 12.2 and 2.0, respectively. Highest PO43- removal of 78.8% was obtained at N/P ratio 12.8. However, C/N ratio did not affect the removal efficiency. Maintaining these specified C/N and N/P ratios in the influent greywater would ensure that the treated greywater meets the required standards for various reuse applications, including flushing, groundwater recharge, and surface water discharge. The integration of RSM with AdaBoost and XGBoost provided accurate predictions of removal efficiencies. For all the models, XGBoost had the highest R2, and lowest MAE and MSE values. The cross validation of RSM models with AdaBoost and XGBoost further reinforced the reliability of these models in predicting treatment outcomes.


Assuntos
Microalgas , Fósforo , Carbono , Nitrogênio , Reprodutibilidade dos Testes , Água , Biomassa
2.
J Environ Manage ; 356: 120711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537468

RESUMO

This study evaluated the environmental and economic impacts of substituting synthetic media with greywater for cultivating microalgae in the biofuel production process. Life cycle assessment (LCA) and technoeconomic assessment (TEA) were employed to compare the impacts of two scenarios - one containing bold's basal (BB) media and another containing greywater as growth mediums for microalgae cultivation. Scenarios 1 and 2 mitigated 1.74 and 2.14 kg CO2 per kg of biofuel production, respectively. Substituting BB media with greywater resulted in a 16.3% reduction in energy requirements, leading to a 79.3% increase in net energy recovered. LCA findings demonstrate a reduction in all seven environmental categories. TEA reveals that, despite a 21.7% higher capital investment, scenario 2 proves more economically viable due to a 39.8% lower operating cost and additional revenue from wastewater treatment and carbon credits. The minimum selling price of biofuel dropped from Rs 73.5/kg to Rs 36.5/kg, highlighting the economic and environmental advantages of substituting BB media with greywater in microalgal biofuel production.


Assuntos
Biocombustíveis , Microalgas , Animais , Carbono , Meios de Cultura , Estágios do Ciclo de Vida , Biomassa
3.
Environ Res ; 210: 112922, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167849

RESUMO

Biochar (BC) production by microwave (MW) co-pyrolysis of food waste (FW) with polyethylene (PE) (mixed in a ratio of 8:1) was performed in the present study using different MW susceptors, i.e. granular activated carbon (G), silica gel (S), cement (C) and flyash (F). BC yield varied from 37 wt% to 45 wt%. The highest yield of 45 wt% was obtained with flyash as MW susceptor. All BC exhibited increased carbon content (57.1-69.0 wt%), fixed carbon (76.0-85.3 wt%), and porous structure with improved thermal stability than the feedstock. The inferential plot exhibited an inverse relationship between yield and carbon of BC with loss tangent (tan Î´) and specific surface area (SSA) of the MW susceptor. Alkali (potassium phosphate) modified F-BC (K-F-BC) showed further improvement in porous structures with a good cavity and presence of carbonyl group (CO) and hydroxide group (O-H) on its surface, which showed good adsorptive removal of metformin (MET). Alkali modification of F-BC improved the adsorption capacity by ∼8 times; thus, resulting in ∼62% MET removal within 5 min. Kinetic models suggested the MET adsorption on BC predominantly controlled by intra-particle diffusion (R2 = 0.72-0.98). Adsorption of MET with S-BC and F-BC followed Langmuir isotherm (R2 = 0.99). On the other hand, G-BC, C-BC and K-F-BC followed Freundlich isotherm (R2 = 0.99). Maximum MET adsorption of 0.17 mg/g, 0.23 mg/g, 0.26 mg/g and 0.27 mg/g were observed with F-BC, G-BC, S-BC and C-BC respectively. Alkali modification of F-BC (K-F-BC) improved its adsorption capacity up to 0.34 mg/g. The Surface deposition, pore filling, π-π interaction and chemical bonding of functional groups with K-F-BC were the predominant mechanisms of MET removal by K-F-BC.


Assuntos
Metformina , Eliminação de Resíduos , Poluentes Químicos da Água , Adsorção , Álcalis , Carvão Vegetal/química , Alimentos , Cinética , Micro-Ondas , Polietileno , Pirólise , Poluentes Químicos da Água/análise
4.
Water Sci Technol ; 86(3): 584-595, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960838

RESUMO

In this study, sequencing batch reactor (SBR) using anaerobic/aerobic/anoxic process was coupled to a solar photocatalytic reactor (SPCR) for greywater treatment. The greywater effluent from SBR (operated at the optimal condition: 6.8 h hydraulic retention time (HRT), 0.7 Volumetric exchange ratio (VER) and 7.94 d solids retention time (SRT) with optimal corn cob adsorbent dosage (0.5 g/L)) was fed to the SPCR (operated at optimal conditions: pH - 3, H2O2 dosage - 1 g/L, catalyst dosage - 5 g/L). Chemical oxygen demand (COD) removal of 92.8±0.5% and ∼100% were achieved in SBR and SBR-SPCR, respectively. Similarly, total organic carbon (TOC) removal of 91±0.9% and ∼100% were observed in SBR and SBR-SPCR, respectively. After SBR treatment, average total nitrogen (TN) removal of 84% was found and this TN removal increased to 93% after combined SBR-SPCR treatment. The maximum PO43-_P reduction of 80±1.5% % was achieved with SBR-adsorption system. In addition, a maximum of 87±0.9% of net PO43-_P removal was reached after SBR-SPCR treatment. 58.9±2.3% BP (benzophenone-3) removal was obtained in the SBR while the integration of SBR and SPCR treatment was resulted in 100% BP removal. An effective anionic surfactant (AS) removal rate (80.1±2.2%) was observed in the SBR phase, which further improved to 94.9±1% at the end of 4 h SPCR treatment.


Assuntos
Reatores Biológicos , Peróxido de Hidrogênio , Adsorção , Análise da Demanda Biológica de Oxigênio , Nitrogênio
5.
Environ Monit Assess ; 195(1): 142, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418594

RESUMO

In recent years, microwave (MW) photocatalytic treatment was used for the removal of several pollutants from wastewater to overcome the disadvantages of conventional photocatalytic treatment. MW irradiation significantly enhanced the photocatalytic degradation pollutants and is considered an innovative treatment approach. This enhancement in photoactivity was mainly attributed to thermal and non-thermal effects of the MW irradiation. Even though the thermal effects of MW irradiation have been conclusively studied, there are many conflicting results regarding the non-thermal effects in catalysts. In general, it has been verified that the non-thermal effects are due to the electrical and magnetic properties of MW. In this article, a detailed review of the recent advancements in MW-assisted photocatalysis has been done, emphasizing the non-thermal effects of MW radiation on the surface of the catalysts. Also, the evolution of external ultraviolet (UV) sources from the conventional Hg lamp to the latest microwave-driven electrodeless lamps (MDEL) has been discussed. MW photocatalytic treatment using MDELs showed complete removal of lignin, dimethyl phthalate (DMP), and azo dye reactive brilliant red X-3B (BR) and more than 90% removal for cimetidine (CMT), rhodamine B (RB), and methylene blue (MB). A brief comparison regarding the removal efficiencies of pollutants by various AOPs and MW photocatalysis has been made to understand the enhanced photoactivity. In addition, various operating parameters that affect the MW photocatalysis like MW intensity, pH, dissolved oxygen, and catalyst dosage; the degradation pathways of various pollutants; and the cost assessment of MW photocatalysis are discussed in detail. This paper will deliver a scientific and technical overview and useful information to scientists and engineers working in this field.


Assuntos
Poluentes Ambientais , Micro-Ondas , Monitoramento Ambiental , Catálise , Água
6.
J Environ Manage ; 297: 113345, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329909

RESUMO

The applicability of waste to energy conversion technique is facing many issues because of current waste management practices. Focusing on the segregation issue of low-density polyethylene (LDPE) from food waste (FW), microwave (MW) co-pyrolysis of FW and LDPE was investigated in this study. Multifactor optimization of the operating parameters, viz., residence time, LDPE in feed and temperature, was done with response surface methodology to achieve maximum bio-oil yield with a low total acid number (TAN). Bio-oil yield and TAN varied from 17 to 42 wt% and 16-45 mg KOH/g respectively, in various experimental runs. The optimum conditions for maximum bio-oil yield with minimum TAN were residence time -7 s, LDPE in the feed-13% and temperature - 550 °C. A quadratic model was developed to predict bio-oil yield and TAN as a function of operating parameters with an error <8.1 %. Addition of LDPE improved the bio-oil yield (by 20 %). The bio-oil also exhibited reduction in moisture content and TAN (30% and 62 %) and increase in pH and higher heating value (HHV) (40 % and 44 %). Sugars (3.09 wt%), alkanes (1.64 wt%), acids (1.07 wt%), alcohols (0.85 wt%), phenols (0.59 wt%), furans (0.58 wt%) and ketones (0.55 wt%) were the major identified compounds in the bio-oil. Thus, the high HHV and chemical composition of bio-oil indicate its potential use in boilers, engines, turbines, transportation fuels and as a renewable feed for chemical synthesis. The main mechanism for bio-oil quality improvement was the synergetic effect of FW hydrocarbon and hydrocarbon radical (•HC) and hydrogen radical (•H) of LDPE. The energy consumption analysis showed an energy requirement of 13.11 kWh/kg for bio-oil production.


Assuntos
Pirólise , Eliminação de Resíduos , Biocombustíveis , Alimentos , Temperatura Alta , Micro-Ondas , Óleos de Plantas , Polietileno , Polifenóis
7.
Water Sci Technol ; 83(5): 1072-1084, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33724937

RESUMO

A novel TiO2 nanoparticle was prepared through green synthesis using Calotropis gigantea (CG) leaf extract. Morphological analysis showed dispersed spherical CG-TiO2 nanoparticles with an average size of 42 nm. The prepared catalyst was used for the degradation of metformin (a widely used diabetic medicine) by solar photocatalysis. A three-factor central composite design (CCD) was used to explore the effect of independent variables, i.e., pH 3-7, metformin concentration 1-10 mg/L, and catalyst (CG-TiO2) dosage 0.5-2.0 g/L. A maximum metformin degradation of 96.7% was observed under optimum conditions i.e., pH = 9.7, initial metformin concentration = 9.7 mg/L and catalyst dosage = 0.7 g/L, with ∼86% mineralization efficiency. A quadratic model with an error <±5% was developed to predict the metformin degradation and the rate of degradation under the optimum conditions followed pseudo-first-order kinetics (k = 0.014/min). CG-TiO2 exhibited higher metformin degradation efficiency (96.7%) compared to P-25 (23.9%) at optimum conditions. The recyclability study indicated effective reuse of the catalyst for up to three cycles. The proposed metformin degradation route is hydroxyl radical (•OH) generation on the CG-TiO2 surface, transfer of •OH to the aqueous phase from CG-TiO2 and subsequent oxidation of metformin in the aqueous phase.


Assuntos
Calotropis , Metformina , Catálise , Extratos Vegetais , Titânio
8.
Water Sci Technol ; 82(10): 2114-2124, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33263588

RESUMO

The continuous growth of the pharmaceutical drug industry has escalated the problem of pharmaceutical waste disposal, and subsequent contamination of aquatic bodies. Paracetamol is one of the most prescribed and purchased drugs that has been widely detected in wastewater and surface water. The present study investigated paracetamol degradation by photocatalytic treatment in a batch system using TiO2 supported on aluminosilicate recovered from waste LED panel (ATiO2). The prepared ATiO2 catalyst was characterized for morphology, elemental composition and crystallinity using scanning electron microscope (SEM) with electron dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. ATiO2 was spherical in morphology with a predominance of the anatase phase of TiO2 and an average size of ∼15 nm. Subsequently, the effects of operating parameters, viz., initial paracetamol concentration (1-10 mg/L), catalyst dosage (0.5-4.0 g/L) and pH (4-10) on paracetamol degradation were investigated using central composite design (CCD). A polynomial model was developed to interpret the linear and interactive effect of operating parameters on the paracetamol degradation efficiency. About 99% degradation efficiency of paracetamol was obtained at optimum conditions (Initial paracetamol concentration ∼2.74 mg/L, ATiO2 dosage ∼2.71 g/L and pH ∼ 9.5). The mechanism of paracetamol degradation was adsorption on aluminosilicate and subsequent degradation by TiO2. ATiO2 could be effectively reused up to 3 cycles, with <5% decrease in the degradation efficiency.


Assuntos
Acetaminofen , Titânio , Silicatos de Alumínio , Catálise , Águas Residuárias
9.
Waste Manag Res ; 38(2): 134-141, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31769348

RESUMO

The effective reuse silica fume (S), a by-product from the silicon manufacturing industry, as an amendment in the composite landfill liner along with natural clay (C) and bentonite (B) was investigated in the present study. Experiments were conducted with various proportions of silica fume (10%-50%) to clay and bentonite to get mixtures C-B-S1 to C-B-S5. The study indicated significant improvement in the geotechnical and pollutant retention capacity by silica fume addition. The maximum dry density of the mixtures ranged from 1.568 to 1.732 g cm-3. Permeability was in the order of C-B

Assuntos
Poluentes Ambientais , Eliminação de Resíduos , Bentonita , Instalações de Eliminação de Resíduos , Resíduos
10.
J Environ Sci Health B ; 52(5): 353-360, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28277081

RESUMO

Carbofuran (CBF) removal in a continuous-flow photocatalytic reactor with granular activated carbon supported titanium dioxide (GAC-TiO2) catalyst was investigated. The effects of feed flow rate, TiO2 concentration and addition of supplementary oxidants on CBF removal were investigated. The central composite design (CCD) was used to design the experiments and to estimate the effects of feed flow rate and TiO2 concentration on CBF removal. The outcome of CCD experiments demonstrated that reactor performance was influenced mainly by feed flow rate compared to TiO2 concentration. A second-order polynomial model developed based on CCD experiments fitted the experimental data with good correlation (R2 ∼ 0.964). The addition of 1 mL min-1 hydrogen peroxide has shown complete CBF degradation and 76% chemical oxygen demand removal under the following operating conditions of CBF ∼50 mg L-1, TiO2 ∼5 mg L-1 and feed flow rate ∼82.5 mL min-1. Rate constant of the photodegradation process was also calculated by applying the kinetic data in pseudo-first-order kinetics. Four major degradation intermediates of CBF were identified using GC-MS analysis. As a whole, the reactor system and GAC-TiO2 catalyst used could be constructive in cost-effective CBF removal with no impact to receiving environment through getaway of photocatalyst.


Assuntos
Carbofurano/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Análise da Demanda Biológica de Oxigênio , Carbofurano/química , Carbofurano/metabolismo , Catálise , Carvão Vegetal , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Desenho de Equipamento , Cromatografia Gasosa-Espectrometria de Massas , Peróxido de Hidrogênio/química , Cinética , Fotobiorreatores , Fotólise , Titânio/química , Raios Ultravioleta
11.
J Environ Manage ; 181: 201-207, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353370

RESUMO

The photocatalytic removal of carbofuran (CBF) from aqueous solution in the presence of granular activated carbon supported TiO2 (GAC-TiO2) catalyst was investigated under batch-mode experiments. The presence of GAC enhanced the photocatalytic efficiency of the TiO2 catalyst. Experiments were conducted at different concentrations of CBF to clarify the dependence of apparent rate constant (kapp) in the pseudo first-order kinetics on CBF photodegradation. The general relationship between the adsorption equilibrium constant (K) and reaction rate constant (kr) were explained by using the modified Langmuir-Hinshelwood (L-H) model. From the observed kinetics, it was observed that the surface reaction was the rate limiting step in the GAC-TiO2 catalyzed photodegradation of CBF. The values of K and kr for this pseudo first-order reaction were found to be 0.1942 L  mg(-1) and 1.51 mg L(-1) min(-1), respectively. In addition, the dependence of kapp on the half-life time was determined by calculating the electrical energy per order experimentally (EEO experimental) and also by modeling (EEO model). The batch-mode experimental outcomes revealed the possibility of 100% CBF removal (under optimized conditions and at an initial concentration of 50 mg L(-1) and 100 mg L(-1)) at a contact time of 90 min and 120 min, respectively. Both L-H kinetic model and EEO model fitted well with the batch-mode experimental data and also elucidated successfully the phenomena of photocatalytic degradation in the presence of GAC-TiO2 catalyst.


Assuntos
Carbofurano/química , Carvão Vegetal/química , Titânio/química , Purificação da Água/métodos , Adsorção , Catálise , Desenho de Equipamento , Meia-Vida , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Fotólise , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
12.
Artigo em Inglês | MEDLINE | ID: mdl-38819509

RESUMO

Ciprofloxacin (CIP) is an antibiotic used to treat bacterial infections. It is not completely broken down during conventional wastewater treatment processes and can persist in the environment, leading to the development of antibiotic-resistant bacteria. This study focuses on the solar photocatalytic degradation CIP using biochar-supported photocatalysts. The photocatalysts developed by combining ZnO and WO3 in different ratios (1:2, 1:1, 2:1) were supported on hemp herd biochar. The photocatalyst made with a ratio of 2:1:1 of ZnO:WO3:biochar (Z2W1H) reported the highest CIP degradation efficiency of 87.3% and TOC removal efficiency of 43.1% at a catalyst dosage of 2 g/L, initial CIP concentration of 3 mg/L, and treatment time of 150 min. Subsequently, the effects of operating parameters on CIP degradation were investigated using central composite design (CCD). About 85.4% degradation efficiency of CIP was obtained at optimum conditions (pH ∼8.4, initial CIP concentration ∼4.4 mg/L, catalytic dosage ∼3.4 g/L) within 90 min. A quadradic model was developed to interpret the linear and interactive effect of operating parameters on the CIP degradation efficiency with 2.24-4.59% error. The adsorption-desorption study showed around 42.21% of adsorbed CIP was desorbed from Z2W1H. Scavenger studies demonstrated that the CIP breakdown was notably done by the superoxide radical (O2•-). The mechanism of CIP degradation was adsorption on biochar and subsequent degradation by photocatalyst. The prevalent degradation reactions such as C-N bond cleavage, decarboxylation, decarbonylation, defluorination, and ring opening lead to formation of various intermediates. The Z2W1H reusability test showed ~ 4.2% decrease in CIP removal efficiency after three cycles.

13.
Bioresour Technol ; 388: 129666, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648069

RESUMO

Biochar was produced from polyculture microalgae cultivated in greywater using microwave pyrolysis. The highest biochar yield and fixed carbon content of 49.9% and 68.7% were obtained at microwave power (P) of 800 W and reaction time (T) of 8.6 min. The developed quadratic models, 166.96 - 0.23P - 3.87 T - 3.49 x10-3PT + 1.73 x10-4P2 + 0.13 T2 and - 73.79 + 0.29P + 1.86 T - 1.80 x10-4P2 could predict biochar yield and fixed carbon content respectively with errors of 6.2 and 7.9%. The volatile matter (VM), fixed carbon (FC), and high heating value (HHV) of the biomass were 69.2%. 23.4% and 17.6 MJ/Kg, respectively. VM, FC, and HHV for biochar obtained at optimum conditions were 20.2%, 68.7%, and 28.3 MJ/Kg, respectively. The process had a net positive energy balance of 11.32 MJ/Kg and energy efficiency of 1.76. This study paves the way for biochar production from greywater-grown microalgae, contributing to waste valorization and energy sustainability.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36692649

RESUMO

Organics and nutrient removal studies are rarely done using polyculture microalgae, and that too in outdoor conditions, as they are often not deemed effective for wastewater treatment purposes. This study examined the organics and nutrient removal efficiency of polyculture microalgae cultivated in greywater. The reactor was operated in outdoor conditions. Hence, it was subjected to natural pH and temperature variations. A growth rate of 0.05 g L-1 day-1 was observed for temperatures up to 37 °C, beyond which the growth rate declined by 0.07 g L-1 day-1. During the treatment, the pH of the system was observed to be between 7.4 and 8.4. However, the growth rate would again pick up (0.05 g L-1 day-1) when the pH and temperature moved towards the optimum range, indicating that the polycultures adapt very quickly to their environment. The maximum biomass concentration reached 0.82 gL-1. The highest removal efficiency of organic carbon, ammonia, and phosphate was 80.7, 61.9, and 58.4%, respectively. Nitrate and nitrite concentrations remained ≤ 1.3 mgL-1 and ≤ 2 mgL-1, respectively, indicating the absence of nitrification/denitrification and ammonia volatilization. The mass balance of microalgae indicated that the primary removal mechanism of nitrogen and phosphorus removal was assimilation by the microalgae. The study proved polyculture microalgae to be as effective as some monoculture species in wastewater treatment, which require costlier controlled growth conditions. The high organics and nutrient removal by polycultures in outdoor conditions could pave the way to reducing wastewater treatment costs.

15.
Environ Technol ; 44(25): 3791-3802, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35482426

RESUMO

In this study, simultaneous nitrification and denitrification-sequencing batch reactor (SND-SBR) process was investigated to treat greywater. The effect of three process parameters, including hydraulic retention time (HRT), volumetric exchange ratio (VER) and sludge retention time (SRT), was optimised using a 23 full factorial design. The statistic model was developed for two response variables, i.e. chemical oxygen demand (COD) and ammonia (NH3-N) removal. The optimum conditions were 6.8 h HRT (anaerobic/aerobic/anoxic: 1.77 h/2.77 h/2.27 h), 0.7 VER and 7.94 d SRT, which resulted in 93.9% COD and 84.6% NH3-N removal efficiency. SRT was the most significant factor, followed by HRT and VER for COD and NH3-N removal. The interaction effect of VER and SRT was significant in COD removal. On the other hand, the interaction effects of HRT-VER and HRT-SRT were significant in NH3-N removal. The removal efficiencies of 89.6 ± 1.1% and 83.7 ± 2.3% were observed for TKN and TN, respectively, in the optimised SND-SBR system. NH3-N removal was obtained via nitrate pathway in the SND-SBR system. The PO43--P removal of 74.2 ± 3.4% was obtained via aerobic phosphorus uptake and post anoxic denitrification at the optimal condition. To enhance PO43--P removal, adsorption (using corn cob adsorbent) was integrated with SBR by adding the optimum adsorbent dose (0.5 g/L). The PO43--P removal efficiency in the SBR-adsorption system was found to be 80 ± 1.5%. The biodegradation of emerging contaminants (ECs) was also carried out in the SND-SBR system, and the results showed removal rate of 58.9 ± 2.3% benzophenone-3 (BP) and 80.1 ± 2.2% anionic surfactant (AS).


Assuntos
Reatores Biológicos , Esgotos , Nitrogênio/metabolismo , Nitrificação , Biodegradação Ambiental
16.
Artigo em Inglês | MEDLINE | ID: mdl-38038921

RESUMO

Waste printed circuit board (WPCB) was subjected to microwave-assisted pyrolysis (MAP) to investigate the energy and pyrolysis products. In MAP, pyrolysis experiments were conducted, and the effects of WPCB to graphite mass ratio on three-phase product yields and their compositions were analyzed. In addition, the role of the initial WPCB mass (10, 55, and 100 g) and susceptor loading (2, 22, and 38 g) on the quality of product yield was also evaluated. By using design of experiments, the effects of graphite susceptor addition and WPCB feedstock quantity was investigated. A significant liquid yield of 38.2 wt.% was achieved at 38 g of graphite and 100 g of WPCB. Several other operating parameters, including average heating rate, pyrolysis time, microwave energy consumption, specific microwave power used, and product yields, were optimized for the MAP of WPCB. Pyrolysis index (PI) was calculated at the blending of fixed quantity WPCB (100 g) and various graphite quantities in the following order: 2 g (21) > 20 g (20.4) > 38 g (19.5). The PI improved by increasing the WPCB quantity (10, 55, and 100 g) with a fixed quantity of graphite. This work proposes the product formation and new reaction pathways of the condensable compounds. GC-MS of the liquid fraction from the MAP of WPCBs without susceptor resulted in the generation of phenolic with 46.1% relative composition. The addition of graphite susceptor aided in the formation of phenolic and the relative composition of phenolics was found to be 83.6%. The area percent of phenol increased from 42.8% (without susceptor) to 78.6% (with susceptor). Without a susceptor, cyclopentadiene derivative was observed in a very high composition (~ 31 area %).

17.
Artigo em Inglês | MEDLINE | ID: mdl-37365360

RESUMO

The prime objective of the current research work was to understand the role of microwave-assisted pyrolysis for the upgradation of expanded polystyrene (EPS) waste into valuable aromatic hydrocarbons. Ethyl acetate solvent was used to dissolve the EPS to enhance the homogeneous dispersion of EPS with susceptor particles. Biochar obtained from the pyrolysis was used as a susceptor. The design of experiments method was used to understand the role of microwave power (300 W, 450 W, and 600 W) and susceptor quantity (5 g, 10 g, and 15 g) in the pyrolysis process. The pyrolysis was conducted till the temperature reached up to 600 °C, and this temperature was achieved in the time interval of 14-38 min based on the experimental conditions. The obtained average heating rates varied in the range of 15 to 41 °C/min to attain the pyrolysis temperature. The EPS feed was converted into char (~ 2.5 wt.%), oil (51 to 60 wt.%), and gaseous (37 to 47 wt.%) products. The specific microwave energy (J/g) was calculated to know the energy requirement; it increased with an increase in susceptor quantity and microwave power, whereas specific microwave power (W/g) was a function of microwave power and increased from 15 to 30 W/g. The predicted values calculated using the model equations closely matched the actual values showing that the developed model equations via optimization had a good fit. The obtained pyrolysis oil physicochemical properties including viscosity (1 to 1.4 cP), density (990 to 1030 kg/m3), heating value (39 to 42 MJ/kg), and flash point (98 to 101 °C) were thoroughly analyzed. The pyrolysis oil was rich in aromatic hydrocarbons and it was predominantly composed of styrene, cyclopropyl methylbenzene, and alkylbenzene derivates.

18.
Data Brief ; 42: 108093, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35434229

RESUMO

This scientific data article is related to the research work entitled "Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology" published in "Journal of Environmental Management" (10.1016/j.jenvman.2021.113345). In this work, collection of Food Waste (FW) and Low-density polyethylene (LDPE) for 7 consecutive days and its characterization was done. Based on the characterization, the composition of simulated FW was fixed for different experimental runs. Valorization of feedstock (FW and LDPE) with increasing temperature with/without the presence of microwave susceptor was analyzed. Statistical significance of LDPE and microwave susceptor addition on bio-oil yield and Total Acid Number (TAN) was verified with single-factor ANOVA. The outcomes of the present dataset will be helpful for the researchers and engineers working in the field of bio-oil generation from microwave co-pyrolysis of mixed waste.

19.
J Environ Sci Health B ; 46(4): 350-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21547823

RESUMO

Carbofuran removal performance of a microwave (MW)-assisted H2O2 system under different MW-power levels (300-900 W) was investigated. Batch experiments were conducted at 100 mg/L carbofuran concentration using a modified-MW reactor with 2450 MHz of fixed frequency. As a precursor, control experiments were carried out with H2O2 alone, MW alone and conventional heating (CH). A maximum carbofuran removal of 14 % was observed in both H2O2 alone and CH systems. On the other hand, only 2 % removal was observed in the MW alone system irrespective of the operation-mode, i.e. continuous or pulsed. The combination of MW and H2O2 produced 100 % carbofuran removal in all the MW-assisted experiments. The MW-assisted system operated under continuous-mode and at 750 W has showed rapid carbofuran degradation, i.e. 30 sec, with the highest first-order removal rate constant of 25.82/min. However, 97 % carbon oxygen demand (COD) removal was observed in the same system only after 30 min. On the other hand, 100 % carbofuran removal and 49 % COD removal were observed in the pulsed-mode MW-assisted H2O2 system after 10 and 30 min, respectively. Carbofuran mineralization in the system was evidenced by the formation of ammonium and nitrate, and carbofuran intermediates.


Assuntos
Carbofurano/análise , Peróxido de Hidrogênio/química , Micro-Ondas , Praguicidas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Recuperação e Remediação Ambiental/instrumentação , Recuperação e Remediação Ambiental/métodos , Purificação da Água/instrumentação
20.
Environ Technol ; 42(10): 1482-1492, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31539313

RESUMO

The present study investigated the efficacy of microwave photo-oxidation (MWPO) process with two oxidants i.e. persulphate (PS) and hydrogen peroxide (H2O2) for degradation of Congo red (CR). The result indicated a CR degradation efficiency of 98% and 96.8% with PS and H2O2, respectively, in 30 min of reaction with corresponding PS dosage of 50 mg/L and H2O2 dosage of 180 mg/L. The COD removal efficiency with the two oxidants were 97.7% and 94.9%, respectively. Higher dosages of oxidant and CR reduced the efficiency of the process in both the cases due to self-quenching. Effect of pH and initial CR concentration on CR removal efficiency also has been studied. Degradation of CR followed pseudo-first-order kinetics with a removal rate constant of 0.12/min and 0.09/min, respectively, with PS and H2O2. The main mechanism of CR degradation was cleavage of the benzene-benzene bond, cleavage of benzene-N bond and hydroxylation. Economic analysis of the MWPO process indicated an energy consumption of 18.3 kWh/g of CR removal and 18.4 kWh/g of COD removal. The process was effective in the rapid degradation and mineralization of high concentration of CR within 30 min.


Assuntos
Oxidantes , Poluentes Químicos da Água , Vermelho Congo , Peróxido de Hidrogênio , Micro-Ondas , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa