RESUMO
GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the first intron of the chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Among the five dipeptide repeat proteins translated from G4C2 HRE, arginine-rich poly-PR (proline:arginine) is extremely toxic. However, the molecular mechanism responsible for poly-PR-induced cell toxicity remains incompletely understood. Here, we found that poly-PR overexpression triggers severe DNA damage in cultured cells, primary cortical neurons, and the motor cortex of a poly-PR transgenic mouse model. Interestingly, we identified a linkage between poly-PR and RNA-binding protein fused in sarcoma (FUS), another ALS-related gene product associated with DNA repair. Poly-PR interacts with FUS both in vitro and in vivo, phase separates with FUS in a poly-PR concentration-dependent manner, and impairs the fluidity of FUS droplets in vitro and in cells. Moreover, poly-PR impedes the recruitment of FUS and its downstream protein XRCC1 to DNA damage foci after microirradiation. Importantly, overexpression of FUS significantly decreased the level of DNA damage and dramatically reduced poly-PR-induced cell death. Our data suggest the severe DNA damage caused by poly-PR and highlight the interconnection between poly-PR and FUS, enlightening the potential therapeutic role of FUS in alleviating poly-PR-induced cell toxicity.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas/genética , Dano ao DNA/genética , Arginina/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/genéticaRESUMO
Multiple myeloma (MM) is the second most common hematological tumor in adults. Immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide (Len), are effective drugs for the treatment of multiple myeloma. Len can recruit IKZF1 and IKZF3 to cereblon (CRBN), a substrate receptor of the cullin 4-RING E3 ligase (CRL4), promote their ubiquitination and degradation, and finally inhibit the proliferation of myeloma cells. However, MM patients develop resistance to IMiDs over time, leading to disease recurrence and deterioration. To explore the possible approaches that may enhance the sensitivity of IMiDs to MM, in this study, we used the proximity labeling technique TurboID and quantitative proteomics to identify Lys-63-specific deubiquitinase BRCC36 as a CRBN-interacting protein. Biochemical experiments demonstrated that BRCC36 in the BRISC complex protects CRBN from lysosomal degradation by specifically cleaving the K63-linked polyubiquitin chain on CRBN. Further studies found that a small-molecule compound SHIN1, which binds to BRISC complex subunit SHMT2, can upregulate CRBN by elevating BRCC36. The combination of SHIN1 and Len can further increase the sensitivity of MM cells to IMiDs. Therefore, this study provides the basis for the exploration of a possible strategy for the SHIN1 and Len combination treatment for MM.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Lenalidomida , Lisossomos , Mieloma Múltiplo , Ubiquitina-Proteína Ligases , Humanos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Lenalidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Ubiquitinação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidoresRESUMO
Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.
Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Camundongos , Histonas/metabolismo , Metilação , Neurônios/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons and the accumulation of Lewy bodies (LB) in the substantia nigra (SN). Evidence shows that microglia-mediated neuroinflammation plays a key role in PD pathogenesis. Using TNF-α as an indicator for microglial activation, we established a cellular model to screen compounds that could inhibit neuroinflammation. From 2471 compounds in a small molecular compound library composed of FDA-approved drugs, we found 77 candidates with a significant anti-inflammatory effect. In this study, we further characterized pazopanib, a pan-VEGF receptor tyrosine kinase inhibitor (that was approved by the FDA for the treatment of advanced renal cell carcinoma and advanced soft tissue sarcoma). We showed that pretreatment with pazopanib (1, 5, 10 µM) dose-dependently suppressed LPS-induced BV2 cell activation evidenced by inhibiting the transcription of proinflammatory factors iNOS, COX2, Il-1ß, and Il-6 through the MEK4-JNK-AP-1 pathway. The conditioned medium from LPS-treated microglia caused mouse DA neuronal MES23.5 cell damage, which was greatly attenuated by pretreatment of the microglia with pazopanib. We established an LPS-stimulated mouse model by stereotactic injection of LPS into mouse substantia nigra. Administration of pazopanib (10 mg·kg-1·d-1, i.p., for 10 days) exerted significant anti-inflammatory and neuronal protective effects, and improved motor abilities impaired by LPS in the mice. Together, we discover a promising candidate compound for anti-neuroinflammation and provide a potential repositioning of pazopanib in the treatment of PD.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Neurônios Dopaminérgicos/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Transcrição AP-1/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Microglia/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismoRESUMO
Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Regulação para Cima , Espécies Reativas de Oxigênio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transdução de Sinais , Doenças Neurodegenerativas/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/farmacologia , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismoRESUMO
BACKGROUND: Although recent studies have revealed an association between the composition of the gut microbiota and obesity, whether specific gut microbiota cause obesity has not been determined. OBJECTIVES: The aim of this study is to determine the causal relationship between specific gut microbiota and abdominal obesity. Based on genome-wide association study (GWAS) summary statistics, we performed a 2-sample Mendelian randomization (MR) analysis to evaluate whether the gut microbiota affects abdominal obesity. METHODS: Gut microbiota GWAS in 1126 twin pairs (age range, 18-89 years; 89% were females) from the TwinsUK study were used as exposure data. The primary outcome tested was trunk fat mass (TFM) GWAS in 492,805 participants (age range, 40-69 years; 54% were females) from the UK Biobank. The gut microbiota were classified at family, genus, and species levels. A feature was defined as a distinct family, genus, or species. MR analysis was mainly performed by an inverse variance-weighted test or Wald ratio test, depending on the number of instrumental variables (IVs) involved. A sensitivity analysis was performed on significant results by a weighted median test and a weighted genetic risk score (GRS) analysis. RESULTS: Results of MR analyses provided evidence of a causal association between 3 microbiota features and TFM, including 1 family [Lachnosiraceae; P = 0.02; ß = 0.001 (SEE, 4.28 × 10-4)], 1 genus [Bifidobacterium; P = 5.0 × 10-9; ß = -0.08 (SEE, 0.14)], and 1 species [Prausnitzii; P = 0.03; ß = -0.007 (SEE, 0.003)]. Both the weighted median test and GRS analysis successfully validated the association of the genetically predicted family, Lachnosiraceae (Pweighted median = 0.03; PGRS = 0.004). CONCLUSIONS: Our findings provided evidence of a causal association between gut microbiota and TFM in UK adults and identified specific bacteria taxa that may regulate the fat metabolism, thus offering new direction for the treatment of obesity.
Assuntos
Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Obesidade Abdominal , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Abdominal/genética , Obesidade Abdominal/microbiologia , Adulto JovemRESUMO
Lack of dopamine production and neurodegeneration of dopaminergic neurons in the substantia nigra are considered as the major characteristics of Parkinson's disease, a prevalent movement disorder worldwide. DJ-1 mutation leading to loss of its protein functions is a genetic factor of PD. In this study, our results illustrated that DJ-1 can directly interact with Ca2+ /calmodulin-dependent protein kinase kinase ß (CaMKKß) and modifies the cAMP-responsive element binding protein 1 (CREB1) activity, thus regulates tyrosine hydroxylase (TH) expression. In Dj-1 knockout mouse substantia nigra, the levels of TH and the phosphorylation of CREB1 Ser133 are significantly decreased. Moreover, Dj-1 deficiency suppresses the phosphorylation of CaMKIV (Thr196/200) and CREB1 (Ser133), subsequently inhibits TH expression in vitro. Furthermore, Knockdown of Creb1 abolishes the effects of DJ-1 on TH regulation. Our data reveal a novel pathway in which DJ-1 regulates CaMKKß/CaMKIV/CREB1 activities to facilitate TH expression.
Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Doença de Parkinson/patologia , Proteína Desglicase DJ-1/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Transdução de Sinais , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration.
Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Lisossomos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Drosophila , Degeneração Lobar Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Biológicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ratos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Lysosomal storage disorders (LSDs) are one of the most common human genetic metabolic diseases caused by gene mutations. Up to now, more than 70 LSDs have been identified and mainly divided into five categories. LSDs are mainly caused by defects in the function of enzymes or lysosomal-related proteins in lysosomes, which causes progressive accumulation of undigested macromolecules within the cell and results in stress and dysfunction in cells, tissues and organs. LSDs can result in multiple systemic damages, including the nervous system, skeletal system and reticuloendothelial system, especially in the early stages of the disease. The central nervous system is severely affected. Lysosome is the final degradative organelles for autophagy by which macromolecules and damaged cellular components and organelles are degraded. Impairment in autophagy is a central and common mechanism underlying many LSDs. The modulation of autophagy has been considered as novel therapeutic approach for LSDs.
Assuntos
Autofagia , Doenças por Armazenamento dos Lisossomos , Humanos , LisossomosRESUMO
Polyglutamine (polyQ) disease is a type of fatal neurodegenerative disease caused by an expansion of CAG repeats in a specific gene, resulting in a protein with an abnormal polyQ fragment. The age of onset and the degree of pathological deterioration are related to the length of the polyQ fragment. At least 9 kinds of polyglutamine diseases have been discovered, including Huntington disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinobulbar muscular atrophy (SBMA) and six spinocerebellar ataxia (SCA) such as SCA1, 2, 3, 6, 7 and 17 subtypes (Table 9.1). Previous studies suggest that autophagy plays a major role in the quality control of disease proteins in polyQ diseases. In this chapter, we majorly focused on three representative polyQ diseases, including spinocerebellar Ataxia type 3 (SCA3), spinocerebellar ataxia type 7 (SCA7) and Huntington's disease (HD). The relationship of the ubiquitin-proteasome system and autophagy involved in disease protein accumulation were summarized.
Assuntos
Autofagia , Atrofia Bulboespinal Ligada ao X , Doença de Huntington , Epilepsias Mioclônicas Progressivas , Peptídeos/metabolismo , Ataxias Espinocerebelares , HumanosRESUMO
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The neuropathological features of PD are selective and progressive loss of dopaminergic neurons in the substantia nigra pars compacta, deficiencies in striatal dopamine levels, and the presence of intracellular Lewy bodies. Interactions among aging and genetic and environmental factors are considered to underlie the common etiology of PD, which involves multiple changes in cellular processes. Recent studies suggest that changes in lysine acetylation and deacetylation of many proteins, including histones and nonhistone proteins, might be tightly associated with PD pathogenesis. Here, we summarize the changes in lysine acetylation of both histones and nonhistone proteins, as well as the related lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), in PD patients and various PD models. We discuss the potential roles and underlying mechanisms of these changes in PD and highlight that restoring the balance of lysine acetylation/deacetylation of histones and nonhistone proteins is critical for PD treatment. Finally, we discuss the advantages and disadvantages of different KAT/KDAC inhibitors or activators in the treatment of PD models and emphasize that SIRT1 and SIRT3 activators and SIRT2 inhibitors are the most promising effective therapeutics for PD.
Assuntos
Lisina Acetiltransferases/genética , Lisina/genética , Doença de Parkinson/genética , Sirtuína 1/genética , Sirtuína 3/genética , Acetilação , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Histonas/genética , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Processamento de Proteína Pós-Traducional/genéticaRESUMO
Abelson helper integration site 1 (AHI1) is associated with several neuropsychiatric and brain developmental disorders, such as schizophrenia, depression, autism, and Joubert syndrome. Ahi1 deficiency in mice leads to behaviors typical of depression. However, the mechanisms by which AHI1 regulates behavior remain to be elucidated. Here, we found that down-regulation of expression of the rate-limiting enzyme in dopamine biosynthesis, tyrosine hydroxylase (TH), in the midbrains of Ahi1-knockout (KO) mice is responsible for Ahi1-deficiency-mediated depressive symptoms. We also found that Rev-Erbα, a TH transcriptional repressor and circadian regulator, is up-regulated in the Ahi1-KO mouse midbrains and Ahi1-knockdown Neuro-2a cells. Moreover, brain and muscle Arnt-like protein 1 (BMAL1), the Rev-Erbα transcriptional regulator, is also increased in the Ahi1-KO mouse midbrains and Ahi1-knockdown cells. Our results further revealed that AHI1 decreases BMAL1/Rev-Erbα expression by interacting with and repressing retinoic acid receptor-related orphan receptor α, a nuclear receptor and transcriptional regulator of circadian genes. Of note, Bmal1 deficiency reversed the reduction in TH expression induced by Ahi1 deficiency. Moreover, microinfusion of the Rev-Erbα inhibitor SR8278 into the ventral midbrain of Ahi1-KO mice significantly increased TH expression in the ventral tegmental area and improved their depressive symptoms. These findings provide a mechanistic explanation for a link between AHI1-related behaviors and the circadian clock pathway, indicating an involvement of circadian regulatory proteins in AHI1-regulated mood and behavior.
Assuntos
Relógios Circadianos , Depressão/genética , Regulação para Baixo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Afeto , Animais , Depressão/metabolismo , Deleção de Genes , Mesencéfalo/fisiologia , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
REV-ERBα, the NR1D1 (nuclear receptor subfamily 1, group D, member 1) gene product, is a dominant transcriptional silencer that represses the expression of genes involved in numerous physiological functions, including circadian rhythm, inflammation, and metabolism, and plays a crucial role in maintaining immune functions. Microglia-mediated neuroinflammation is tightly associated with various neurodegenerative diseases and psychiatric disorders. However, the role of REV-ERBα in neuroinflammation is largely unclear. In this study, we investigated whether and how pharmacological activation of REV-ERBα affected lipopolysaccharide (LPS)-induced neuroinflammation in mouse microglia in vitro and in vivo. In BV2 cells or primary mouse cultured microglia, application of REV-ERBα agonist GSK4112 or SR9011 dose-dependently suppressed LPS-induced microglial activation through the nuclear factor kappa B (NF-κB) pathway. In BV2 cells, pretreatment with GSK4112 inhibited LPS-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα) kinase (IκK), thus restraining the phosphorylation and degradation of IκBα, and blocked the nuclear translocation of p65, a NF-κB subunit, thereby suppressing the expression and secretion of the proinflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor α (TNFα). Moreover, REV-ERBα agonist-induced inhibition on neuroinflammation protected neurons from microglial activation-induced damage, which were also demonstrated in mice with their ventral midbrain microinjected with GSK4112, and then stimulated with LPS. Our results reveal that enhanced REV-ERBα activity suppresses microglial activation through the NF-κB pathway in the central nervous system.
Assuntos
Glicina/análogos & derivados , Microglia/efeitos dos fármacos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Pirrolidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tiofenos/uso terapêutico , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular Tumoral , Glicina/farmacologia , Glicina/uso terapêutico , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Masculino , Mesencéfalo/fisiopatologia , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pirrolidinas/farmacologia , Tiofenos/farmacologiaRESUMO
Dendritic cell nuclear protein-1 (DCNP1) is a protein associated with major depression. In the brains of depression patients, DCNP1 is up-regulated. However, how DCNP1 participates in the pathogenesis of major depression remains unknown. In this study, we first transfected HEK293 cells with EGFP-DCNP1 and demonstrated that the full-length DCNP1 protein was localized in the nucleus, and RRK (the residues 117-119) composed its nuclear localization signal (NLS). An RRK-deletion form of DCNP1 (DCNP1ΔRRK) and truncated form (DCNP11-116), each lacking the RRK residues, did not show the specific nuclear localization like full-length DCNP1 in the cells. A rat glioma cell line C6 can synthesize melatonin, a hormone that plays important roles in both sleep and depression. We then revealed that transfection of C6 cells with full-length DCNP1 but not DCNP1ΔRRK or DCNP11-116 significantly decreased the levels of melatonin. Furthermore, overexpression of full-length DCNP1, but not DCNP1ΔRRK or DCNP11-116, in C6 cells significantly decreased both the mRNA and protein levels of N-acetyltransferase (NAT), a key enzyme in melatonin synthesis. Full-length DCNP1 but not DCNP1ΔRRK or DCNP11-116 was detected to interact with the Nat promoter and inhibited its activity through its E-box motif. Furthermore, full-length DCNP1 but not the mutants interacted with and repressed the transcriptional activity of BMAL1, a transcription factor that transactivates Nat through the E-box motif. In conclusion, we have shown that RRK (the residues 117-119) are the NLS responsible for DCNP1 nuclear localization. Nuclear DCNP1 represses NAT expression and melatonin biosynthesis by interacting with BMAL1 and repressing its transcriptional activity. Our study reveals a connection between the major depression candidate protein DCNP1, circadian system and melatonin biosynthesis, which may contribute to the pathogenesis of depression.
Assuntos
Fatores de Transcrição ARNTL/metabolismo , Acetiltransferases/antagonistas & inibidores , Melatonina/biossíntese , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição ARNTL/genética , Acetiltransferases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Sinais de Localização Nuclear , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Ratos , Proteínas Repressoras/genética , Deleção de Sequência , Transcrição GênicaRESUMO
AIM: Parkin has been shown to exert protective effects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in different models of Parkinson disease. In the present study we investigated the molecular mechanisms underlying the neuroprotective action of parkin in vitro. METHODS: HEK293, HeLa and PC12 cells were transfected with parkin, parkin mutants, p62 or si-p62. Protein expression and ubiquitination were assessed using immunoblot analysis. Immunoprecipitation assay was performed to identify the interaction between parkin and scaffold protein p62. PC12 and SH-SY5Y cells were treated with 6-OHDA (200 µmol/L), and cell apoptosis was detected using PI and Hoechst staining. RESULTS: In HEK293 cells co-transfected with parkin and p62, parkin was co-immunoprecipitated with p62, and parkin overexpression increased p62 protein levels. In parkin-deficient HeLa cells, transfection with wild-type pakin, but not with ligase activity-deficient pakin mutants, significantly increased p62 levels, suggesting that parkin stabilized p62 through its E3 ligase activity. Transfection with parkin or p62 significantly repressed ERK1/2 phosphorylation in HeLa cells, but transfection with parkin did not repress ERK1/2 phosphorylation in p62-knockdown HeLa cells, suggesting that p62 was involved in parkin-induced inhibition on ERK1/2 phosphorylation. Overexpression of parkin or p62 significantly repressed 6-OHDA-induced ERK1/2 phosphorylation in PC12 cells, and parkin overexpression inhibited 6-OHDA-induced apoptosis in PC12 and SH-SY5Y cells. CONCLUSION: Parkin protects PC12 cells against 6-OHDA-induced apoptosis via ubiquitinating and stabilizing scaffold protein p62, and repressing ERK1/2 activation.
Assuntos
Apoptose , Proteínas de Choque Térmico/metabolismo , Oxidopamina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células PC12 , Ratos , Proteína Sequestossoma-1 , UbiquitinaçãoRESUMO
AIM: In the penumbra after focal cerebral ischemia, an increase of protease Omi is linked to a decrease of Hs1-associated protein X-1 (Hax-1), a protein belonging to the Bcl-2 family. In this study we investigated the mechanisms underlying the regulation of Hax-1 by protease Omi in cerebral ischemia/reperfusion (I/R) injury. METHODS: Mouse neuroblastoma N2a cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R); cell viability was assessed with MTT assay. Mice underwent 2-h middle cerebral artery occlusion (MCAO) and reperfusion, and the infarct volume was determined with TTC staining. The expression of Omi and Hax-1 was detected using immunoblot and immunofluorescence assays. The mitochondrial membrane potential was measured using TMRM staining. RESULTS: In the brains of MCAO mice, the protein level of Omi was significantly increased, while the protein level of Hax-1 was decreased. Similar changes were observed in OGD/R-treated N2a cells, but the mRNA level of Hax-1 was not changed. Furthermore, in OGD/R-treated N2a cells, knockdown of Omi significantly increased Hax-1 protein level. Immunofluorescence assay showed that Omi and Hax-1 were co-localized in mitochondria of N2a cells. OGD/R caused marked mitochondrial damage and apoptosis in N2a cells, while inhibition of Omi protease activity with UCF-101 (10 µmol/L) or overexpression of Hax-1 could restore the mitochondrial membrane potential and attenuate cell apoptosis. Moreover, pretreatment of MCAO mice with UCF-101 (7.15 mg/kg, ip) could restore Hax-1 expression, inhibit caspase activation, and significantly reduce the infarct volume. CONCLUSION: Protease Omi impairs mitochondrial function by cleaving Hax-1, which induces apoptosis in OGD/R-treated N2a cells and causes I/R injury in MCAO mice.
Assuntos
Encéfalo/patologia , Infarto da Artéria Cerebral Média/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Neuroblastoma/metabolismo , Proteínas/metabolismo , Traumatismo por Reperfusão/metabolismo , Serina Endopeptidases/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Infarto da Artéria Cerebral Média/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Oxigênio/metabolismo , Traumatismo por Reperfusão/patologiaRESUMO
Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson's disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.
Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidas/metabolismo , Inflamação/metabolismo , Lisossomos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismoRESUMO
AIM: To investigate whether sequestosome 1/p62 (p62), a key cargo adaptor protein involved in both the ubiquitin-proteasome system and the autophagy-lysosome system, could directly regulate autophagy in vitro. METHODS: HEK 293 cells or HeLa cells were transfected with p62-expressing plasmids or siRNA targeting p62. The cells or the cell lysates were subsequently subjected to immunofluorescence assay, immunoprecipitation assay, or immunoblot analysis. In vitro pulldown assay was used to study the interaction of p62 with Bcl-2. RESULTS: Overexpression of p62 significantly increased the basal level of autophagy in both HEK 293 cells and HeLa cells, whereas knockdown of p62 significantly decreased the basal level of autophagy. In vitro pulldown assay showed that p62 directly interacted with Bcl-2. It was observed in HeLa cells that p62 co-localized with Bcl-2. Furthermore, knockdown of p62 in HEK 293 cells significantly increased the amount of Beclin 1 that co-immunoprecipitated with Bcl-2. CONCLUSION: p62 induces autophagy by disrupting the association between Bcl-2 and Beclin 1.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , RNA Interferente Pequeno/genética , Proteína Sequestossoma-1 , Transfecção , Regulação para CimaRESUMO
The accumulation of pathological α-synuclein (α-syn) in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson's disease (PD). Recently, the findings of prion-like transmission of α-syn pathology have expanded our understanding of the region-specific distribution of α-syn in PD patients. Accumulating evidence suggests that α-syn aggregates are released from neurons and endocytosed by glial cells, which contributes to the clearance of α-syn. However, the activation of glial cells by α-syn species produces pro-inflammatory factors that decrease the uptake of α-syn aggregates by glial cells and promote the transmission of α-syn between neurons, which promotes the spread of α-syn pathology. In this article, we provide an overview of current knowledge on the role of glia and α-syn pathology in PD pathogenesis, highlighting the relationships between glial responses and the spread of α-syn pathology.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Parte Compacta da Substância Negra/metabolismoRESUMO
Neuroinflammation is a pathological change that is involved in the progression of Parkinson's disease. Dysfunction of chaperone-mediated autophagy (CMA) has proinflammatory effects. However, the mechanism by which CMA mediates inflammation and whether CMA affects microglia and microglia-mediated neuronal damage remain to be elucidated. In the present study, we found that LAMP2A, a limiting protein for CMA, was decreased in lipopolysaccharide (LPS)-treated primary microglia. Activation of CMA by the activator CA significantly repressed LPS-induced microglial activation, whereas CMA dysfunction exacerbated microglial activation. We further identified that the protein p300 was a substrate of CMA. Degradation of p300 by CMA reduced p65 acetylation, thereby inhibiting the transcription of proinflammatory factors and the activation of the NLRP3 inflammasome. Furthermore, CA pretreatment inhibited microglia-mediated inflammation and, in turn, attenuated neuronal death in vitro and in vivo. Our findings suggest repressive effects of CMA on microglial activation through the p300-associated NF-κB signaling pathway, thus uncovering a mechanistic link between CMA and neuroinflammation.