RESUMO
The pursuit of discovering new high-temperature superconductors that diverge from the copper-based model1-3 has profound implications for explaining mechanisms behind superconductivity and may also enable new applications4-8. Here our investigation shows that the application of pressure effectively suppresses the spin-charge order in trilayer nickelate La4Ni3O10-δ single crystals, leading to the emergence of superconductivity with a maximum critical temperature (Tc) of around 30 K at 69.0 GPa. The d.c. susceptibility measurements confirm a substantial diamagnetic response below Tc, indicating the presence of bulk superconductivity with a volume fraction exceeding 80%. In the normal state, we observe a strange metal behaviour, characterized by a linear temperature-dependent resistance extending up to 300 K. Furthermore, the layer-dependent superconductivity observed hints at a unique interlayer coupling mechanism specific to nickelates, setting them apart from cuprates in this regard. Our findings provide crucial insights into the fundamental mechanisms underpinning superconductivity, while also introducing a new material platform to explore the intricate interplay between the spin-charge order, flat band structures, interlayer coupling, strange metal behaviour and high-temperature superconductivity.
RESUMO
All two-dimensional (2D) materials of group IV elements from Si to Pb are stabilized by carrier doping and interface bonding from substrates except graphene which can be free-standing. The involvement of strong hybrid of bonds, adsorption of exotic atomic species, and the high concentration of crystalline defects are often unavoidable, complicating the measurement of the intrinsic properties. In this work, we report the discovery of seven kinds of hitherto unreported bulk compounds (RO)nPb (R = rare earth metals, n = 1,2), which consist of quasi-2D Pb square nets that are spatially and electronically detached from the [RO]δ+ blocking layers. The band structures of these compounds near Fermi levels are relatively clean and dominantly contributed by Pb, resembling the electron-doped free-standing Pb monolayer. The R2O2Pb compounds are metallic at ambient pressure and become superconductors under high pressures with much enhanced critical fields. In particular, Gd2O2Pb (9.1 µB/Gd) exhibits an interesting bulk response of lattice distortion in conjunction with the emergence of superconductivity and magnetic anomalies at a critical pressure of 10 GPa. Our findings reveal the unexpected facets of 2D Pb sheets that are considerably different from their bulk counterparts and provide an alternative route for exploring 2D properties in bulk materials.