Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Craniofac Surg ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171781

RESUMO

OBJECTIVE: To systematically investigate the therapeutic effects of neuroendoscopic (NE) surgery in supratentorial hypertensive intracerebral hemorrhage (HICH), including key indicators such as hematoma evacuation rate, complications, and neurological prognosis, thus comprehensively understanding the superiority of NE surgery in supratentorial HICH therapy, and to provide scientific basis and decision-making support for clinical practice. METHODS: The PubMed, EMBASE, Cochrane, Google, and CNKI databases were searched for relevant literature related to NE surgery for supratentorial HICH published before October 2023. Summary analyses of hematoma evacuation rate, mortality, clinical treatment, good functional outcome (Glasgow Outcome Scale, Glasgow Coma Scale, and modified Rankin Scale), and postoperative complications in the NE group were performed, and Revman 5.3 was used to conduct the meta-analysis. RESULTS: Fourteen trials with 1266 patients were enrolled in this meta-analysis, with an overall moderate risk of bias. Compared with craniotomy, NE-treated patients had a higher rate of cerebral hematoma evacuation, and their operative time, intraoperative blood loss, and hospital stay were markedly reduced. Moreover, NE surgery could better restore patients' neurological function and autonomy, presenting a higher Glasgow Outcome Scale, Glasgow Coma Scale, and a lower modified Rankin Scale. Moreover, NE surgery effectively reduced the incidence of mortality and postoperative complications, especially rebleeding and lung infection. CONCLUSION: Neuroendoscopic surgery not only better removes intracranial hematomas and improves neurological function and autonomy in supratentorial HICH patients, but also effectively reduces mortality and postoperative complications.

2.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066105

RESUMO

In modern radar detection systems, the particle filter technique has become one of the core algorithms for real-time target detection and tracking due to its good nonlinear and non-Gaussian system state estimation capability. However, when dealing with complex dynamic scenes, the traditional particle filter algorithm exposes obvious deficiencies. The main expression is that the sample degradation is serious, which leads to a decrease in estimation accuracy. In multi-target states, the algorithm is difficult to effectively distinguish and stably track each target, which increases the difficulty of state estimation. These problems limit the application potential of particle filter technology in multi-target complex environments, and there is an urgent need to develop a more advanced algorithmic framework to enhance its robustness and accuracy in complex scenes. Therefore, this paper proposes an improved particle filter algorithm for multi-target detection and tracking. Firstly, the particles are divided into tracking particles and searching particles. The tracking particles are used to maintain and update the trajectory information of the target, and the searching particles are used to identify and screen out multiple potential targets in the environment, to sufficiently improve the diversity of the particles. Secondly, the density-based spatial clustering of applications with noise is integrated into the resampling phase to improve the efficiency and accuracy of particle replication, so that the algorithm can effectively track multiple targets. Experimental result shows that the proposed algorithm can effectively improve the detection probability, and it has a lower root mean square error (RMSE) and a stronger adaptability to multi-target situation.

3.
BMC Vet Res ; 19(1): 44, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765367

RESUMO

BACKGROUND: IFN-γ is a pleiotropic cytokine that has been shown to affect multiple cellular functions of bovine mammary epithelial cells (BMECs) including impaired milk fat synthesis and induction of malignant transformation via depletion of arginine, one of host conditionally essential amino acids. But the molecular mechanisms of these IFN-γ induced phenotypes are still unknown. METHODS: BMECs were treated with IFN-γ for 6 h, 12 h, and 24 h. The metabolomic profiling in BMECs upon IFN-γ induction were assessed using untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolomic analysis. Key differentially expressed metabolites (DEMs) were quantified by targeted metabolomics. RESULTS: IFN-γ induction resulted in significant differences in the contents of metabolites. Untargeted analysis identified 221 significantly DEMs, most of which are lipids and lipid-like molecules, organic acids and derivatives, organ heterocyclic compounds and benzenoids. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEMs were enriched in fructose and mannose metabolism, phosphotransferase system (PTS), ß-alanine metabolism, arginine and proline metabolism, methane metabolism, phenylalanine metabolism, and glycolysis/gluconeogenesis. Quantification of selected key DEMs by targeted metabolomics showed significantly decreased levels of D-(-)-mannitol, argininosuccinate, and phenylacetylglycine (PAG), while increased levels in S-hydroxymethylglutathione (S-HMG) and 2,3-bisphospho-D-glyceric acid (2,3-BPG). CONCLUSIONS: These results provide insights into the metabolic alterations in BMECs upon IFN-γ induction and indicate potential theoretical basis for clarifying IFN-γ-induced diseases in mammary gland.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Animais , Bovinos , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Interferon gama/metabolismo , Arginina , Células Epiteliais/metabolismo
4.
Scand J Clin Lab Invest ; 83(1): 8-17, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484775

RESUMO

AIM: The diagnosis of alcoholic liver disease (ALD) is still a great challenge. Therefore, the purpose of this study is to identify and characterize new metabolomic biomarkers for the diagnosis and staging of ALD. METHODS: A total of 127 patients with early liver injury, 40 patients with alcoholic cirrhosis (ALC) and 40 healthy controls were included in this study. Patients with early liver injury included 45 patients with alcoholic liver disease (ALD), 40 patients with non-alcoholic fatty liver disease (NAFLD) and 40 patients with viral liver disease (VLD). The differential metabolites in serum samples were analyzed using ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry, and partial metabolites in the differential metabolic pathway were identified by liquid chromatography- tandem mass spectrometry. RESULTS: A total of 40 differential metabolites and five differential metabolic pathways in the four groups of patients with early liver disease and healthy controls were found, and the metabolic pathway of primary bile acid (BA) biosynthesis was the pathway that included the most differential metabolites. Therefore, 22 BA profiles were detected. The results revealed that the changes of BA profiles were most pronounced in patients with ALD compared with patients with NAFLD and VLD, in whom 12 differential BAs were diagnostic markers of ALD (AUC = 0.883). The 19 differential BAs in ALC and ALD were diagnostic markers of the stage of alcoholic hepatic fibrosis (AUC = 0.868). CONCLUSION: BA profiles are potential indicators in the diagnosis of ALD and evaluation of different stages.


Assuntos
Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Humanos , Ácidos e Sais Biliares , Hepatopatias Alcoólicas/diagnóstico , Cirrose Hepática , Biomarcadores
5.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687991

RESUMO

According to the survey statistics, most traffic accidents are caused by the driver's behavior and status irregularities. Because there is no multi-level dangerous state grading system at home and abroad, this paper proposes a complex state grading system for real-time detection and dynamic tracking of the driver's state. The system uses OpenMV as the acquisition camera combined with the cradle head tracking system to collect the driver's current driving image in real-time dynamically, combines the YOLOX algorithm with the OpenPose algorithm to judge the driver's dangerous driving behavior by detecting unsafe objects in the cab and the driver's posture, and combines the improved Retinaface face detection algorithm with the Dlib feature-point algorithm to discriminate the fatigue driving state of the driver. The experimental results show that the accuracy of the three driver danger levels (R1, R2, and R3) obtained by the proposed system reaches 95.8%, 94.5%, and 96.3%, respectively. The experimental results of this system have a specific practical significance in driver-distracted driving warnings.

6.
BMC Cancer ; 22(1): 864, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941558

RESUMO

BACKGROUND: IFN-γ has been traditionally recognized as an inflammatory cytokine that involves in inflammation and autoimmune diseases. Previously we have shown that sustained IFN-γ induced malignant transformation of bovine mammary epithelial cells (BMECs) via arginine depletion. However, the molecular mechanism underlying this is still unknown. METHODS: In this study, the amino acids contents in BMECs were quantified by a targeted metabolomics method. The acquisition of differentially expressed genes was mined from RNA-seq dataset and analyzed bioinformatically. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry (IHC) assay were performed to detect gene mRNA and protein expression levels. CCK-8 and would healing assays were used to detect cell proliferation and migration abilities, respectively. Cell cycle phase alternations were analyzed by flow cytometry. RESULTS: The targeted metabolomics analysis specifically discovered IFN-γ induced arginine depletion through accelerating arginine catabolism and inhibiting arginine anabolism in BMECs. Transcriptome analysis identified leucine aminopeptidase 3 (LAP3), which was regulated by p38 and ERK MAPKs, to downregulate arginine level through interfering with argininosuccinate synthetase (ASS1) as IFN-γ stimulated. Moreover, LAP3 also contributed to IFN-γ-induced malignant transformation of BMECs by upregulation of HDAC2 (histone deacetylase 2) expression and promotion of cell cycle proteins cyclin A1 and D1 expressions. Arginine supplementation did not affect LAP3 and HDAC2 expressions, but slowed down cell cycle process of malignant BMECs. In clinical samples of patients with breast cancer, LAP3 was confirmed to be upregulated, while ASS1 was downregulated compared with healthy control. CONCLUSIONS: These results demonstrated that LAP3 mediated IFN-γ-induced arginine depletion to malignant transformation of BMECs. Our findings provide a potential therapeutic target for breast cancer both in humans and dairy cows.


Assuntos
Arginina , Neoplasias da Mama , Leucil Aminopeptidase/metabolismo , Animais , Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Mama/metabolismo , Neoplasias da Mama/metabolismo , Bovinos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Interferon gama/metabolismo
7.
Appl Microbiol Biotechnol ; 106(24): 8233-8243, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36385568

RESUMO

Atherosclerosis (AS) is a major cause of death and morbidity worldwide. There is an increasing amount of evidence that the gut microbiota plays an important role in disorders associated with lipid metabolism, such as AS, and alterations in the composition of the gut microbiota and its metabolic potential have been identified as contributing factors in the development of AS. Recently, probiotics have attracted great interest for their excellent cholesterol-lowering ability, their capacity to improve vascular endothelial function, and their participation in the remodeling of the intestinal flora to prevent AS. The incidental findings of our other study suggest that probiotic Lactobacillus rhamnosus GG may be associated with slowing the progression of AS. Thus, we delivered strain GG into mice by oral feeding and found that strain GG could effectively inhibit AS plaque generation. We analyzed the differences in gut microbiota composition and the peripheral blood metabolome in mice after oral feeding of strain GG by 16S DNA sequencing and untargeted metabolomics, respectively. The results showed that strain GG changed the composition of the gut microbiota in mice fed a high-fat diet; elevated the abundance of beneficial bacteria, such as Bilophila and Alistipes, and decreased the abundance of harmful bacteria, such as Deltaproteobacteria. The results of enrichment analysis of the gut microbiota and the peripheral blood metabolome both indicated that the antiatherosclerotic effect of strain GG might be associated with the biosynthesis pathway of ketone bodies. In addition, strain GG attenuated endothelial injury and elevated peripheral blood ketone body content in mice but did not significantly affect low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) content. In conclusion, our study provides new evidence that strain GG slows the progression of AS, which may be associated with its improvement of the gut microbiome and peripheral blood metabolome, its ability to increase the abundance of beneficial bacteria, and its participation in unsaturated fatty acid and ketone body synthesis and degradation. KEY POINTS: • L. rhamnosus GG attenuated endothelial injury and atherosclerotic plaque formation • L. rhamnosus GG elevated the abundance of beneficial bacteria • L. rhamnosus GG elevated peripheral blood ketone body content in mice.


Assuntos
Lacticaseibacillus rhamnosus , Camundongos , Animais , Metabolômica , Colesterol , Cetonas
8.
J Sep Sci ; 45(10): 1683-1692, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35247934

RESUMO

Meropenem, a representative ß-lactam antibiotic, is widely used to treat complicated and serious infections. Therefore, it is of great significance to monitor the plasma drug concentration for individualized antimicrobial therapy. This study first describes the development and validation of high-performance liquid chromatography-tandem mass spectrometry cubed method for monitoring meropenem in human plasma. Protein precipitation with methanol and a chromatographic analysis time of 7 min make this method simple and of high throughput. Meropenem was extracted from human plasma with recoveries >94.1%. Calibration curves were linear (R2  > 0.995) in the concentration range of 0.5-50 µg/mL. Overall accuracy and precision did not exceed 8.0% as well as no significant matrix effect was observed. The novelty of this method is that the triple-stage mass spectrometry technology improves the selectivity and sensitivity. A comparison of the presented method and traditional liquid chromatography-tandem mass spectrometry method was assessed in 44 patients treated with meropenem and Passing-Bablok regression coefficients and Bland-Altman plots showed that no significant difference between the two methods. So the triple-stage mass spectrometry method developed in this study is appropriate and practical for the monitor of meropenem in the daily clinical laboratory practice.


Assuntos
Monitoramento de Medicamentos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos , Meropeném , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
9.
J Sep Sci ; 45(6): 1153-1161, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34981894

RESUMO

Methotrexate, a folic acid antitumor drug, is widely used to treat childhood acute lymphoblastic leukemia. Therapeutic drug monitoring is crucial for adjusting the dosage of methotrexate according to its plasma concentration and reducing adverse effects. Micro-sampling strategies, like dried plasma spot, is an attractive but underutilized method that has the desired features of easy collection, storage, and transport, and overcomes known hematocrit issues in dried blood spot analysis. This study describes a dried plasma spot-based liquid chromatography-tandem mass spectrometry method for quantification of methotrexate. The assay showed good linearity over 30-2000 ng/mL (R2 ≥ 0.995) as well as excellent precision (0.6-9.3%) and accuracy (89.2-108.3%). Methotrexate was extracted from dried plasma spot and wet plasma samples with recoveries greater than 92.1%, and no significant matrix effect was observed. A comparison of dried plasma spot and wet plasma concentrations was assessed in 27 patients treated with methotrexate and Passing-Bablok regression coefficients showed that no significant difference between the two methods. The Bland-Altman plots showed similar agreement between the methods, indicating that the proposed dried plasma spot sampling method is an effective way to monitor the concentration of methotrexate in human plasma.


Assuntos
Monitoramento de Medicamentos , Espectrometria de Massas em Tandem , Criança , Cromatografia Líquida , Teste em Amostras de Sangue Seco/métodos , Monitoramento de Medicamentos/métodos , Humanos , Metotrexato , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
10.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080374

RESUMO

The TDM of voriconazole which exhibits wide inter-individual variability is indispensable for treatment in clinic. In this study, a method that high-performance liquid chromatography tandem mass spectrometry cubed (HPLC-MS3) is first built and validated to quantify voriconazole in human plasma. The system is composed of Shimadzu Exion LCTM UPLC coupled with a Qtrap 5500 mass spectrometer. The separation of voriconazole is performed on a Poroshell 120 SB-C18 column at a flow rate of 0.8 mL/min remaining 7 min for each sample. The calibration curves are linear in the concentration range of 0.25-20 µg/mL. Intra-day and inter-day accuracies and precisions are within 8.0% at three concentrations, and the recoveries and matrix effect are all within accepted limits. In terms of stability, there is no significant degradation of voriconazole under various conditions. The HPLC-MS3 and HPLC-MRM (multiple reaction monitoring) methods are compared in 42 patients with Passing-Bablok regression and Bland-Altman plots, and the results show no significant difference between the two methods. However, HPLC-MS3 has a higher S/N (signal-to-noise ratio) and response than the MRM. Finally, the HPLC-MS3 assay is successfully applied to monitor the TDM (therapeutic drug monitoring) of voriconazole in human plasma, and this verifies that the dosing guidelines for voriconazole have been well implemented in the clinic and patients have received excellent treatment.


Assuntos
Monitoramento de Medicamentos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Monitoramento de Medicamentos/métodos , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Voriconazol
11.
J Sep Sci ; 44(23): 4209-4221, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592055

RESUMO

Accumulating evidence suggests that amino acids are important indicators of nutritional and metabolic status. A high-resolution mass spectrometry method based on sequential window acquisition of all theoretical mass spectra acquisition was developed for the simultaneous determination of 16 amino acids in human plasma. Sample preparation by protein precipitation using a mixture of acetonitrile and formic acid was followed by a BEH Amide column. The superiority of this method was investigated by comparing it to time-of-flight scan and multiple reaction monitoring modes. The limit of detection in sequential window acquisition of all theoretical mass spectra mode for threonine, methionine, histidine, citrulline, and tryptophan is 0.1 ng on the column; for lysine and asparagine is 0.2 ng; for alanine, pyroglutamic acid, leucine, ornithine, and aspartate is 0.5 ng, for arginine is 1.0 ng; for glutamate and serine is 2.0 ng; for glutamine is 10.0 ng. This method was linear in the range 0.8-40 µg/mL for arginine, citrulline, glutamate, histidine, leucine, methionine, pyroglutamic acid, threonine, tryptophan; 2-100 µg/mL for asparagine, aspartate, lysine, ornithine, serine; and 4-200 µg/mL for alanine, glutamine with good accuracy and precision. Significantly different levels in 11 amino acids were observed between childhood and adulthood, representing the growth and development of individuals relating to the level of amino acids.


Assuntos
Aminoácidos/sangue , Adulto , Idoso , Aminoácidos/metabolismo , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Humanos , Lactente , Espectrometria de Massas , Pessoa de Meia-Idade
12.
Exp Cell Res ; 368(2): 236-247, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746817

RESUMO

Breast cancer is the most common female malignant tumors in the world. It seriously affects women's physical and mental health and the leading cause of cancer death among women. Our previous study demonstrated that diet-derived IFN-γ promoted the malignant transformation of primary bovine mammary epithelial cells by accelerating arginine depletion. The current study aimed to explore whether arginine addition could inhibit the degree of malignant transformation and its molecular mechanism. The results indicate that arginine addition could alleviate the malignant transformation of mammary epithelial cells induced by IFN-γ, including reducing cell proliferation, cell migration and colony formation, through the NF-κB-GCN2/eIF2α pathway. The in vivo experiments also consistently confirmed that arginine supplementation could significantly inhibit tumor growth in tumor-bearing mice. Furthermore, the investigation of the clinical data also revealed that the plasma or tissue from human breast cancer patients owned lower arginine level and higher IFN-γ level than that from patients with benign breast disease, showing IFN-γ may be a potential control target. Our findings demonstrate that arginine supplement could antagonize the malignant transformation of mammary epithelial cells induced by IFN-γ (nutritionally induced) both in vitro and in vivo, and IFN-γ was higher in breast cancer women. This might provide a novel strategy for the prevention and treatment of breast cancer regarding to nutrition.


Assuntos
Arginina/metabolismo , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Interferon gama/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Mama/metabolismo , Neoplasias da Mama/metabolismo , Bovinos , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Camundongos , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
13.
Microb Pathog ; 106: 25-29, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28131949

RESUMO

Fibroblasts are the structural base of mammary breast tissues. TGF-ß1 can regulate the fibrotic process; however, it remains unclear whether TGF-ß1 influences the susceptibility of fibroblasts to bacteria. Staphylococcus aureus (S. aureus) is a major bacterium in both chronic and subclinical mastitis in lactating cows that acts by invading host cells. To better understand the function of TGF-ß1 in bovine mammary fibroblasts' (BMFBs) susceptibility to bacteria as well as the mechanisms involved, a primary BMFB model was established by treating cells with TGF-ß1 followed by infection with S. aureus. The results revealed that the adhesion and invasion of S. aureus into BMFBs was significantly increased after cells were treated with 5 ng/ml TGF-ß1 for 12 h. Moreover, TGF-ß1 can increase Collagen I and α-SMA expression via activation of ERK signaling. However, the increased adhesion and invasion of S. aureus can be blocked by specific antibodies against either Collagen I or α-SMA, indicating that the increased adhesion and invasion are dependent on TGF-ß1-induced upregulation of both Collagen I and α-SMA. Using PD98059, an ERK inhibitor, could also decrease the adhesion and invasion of S. aureus. These results indicate that TGF-ß1 could promote S. aureus adhesion to and invasion into BMFBs by increasing Collagen I and α-SMA expression and may provide a novel target for controlling bovine mastitis.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia , Fator de Crescimento Transformador beta1/farmacologia , Actinas/efeitos dos fármacos , Actinas/genética , Actinas/metabolismo , Animais , Bovinos , Doenças dos Bovinos/induzido quimicamente , Técnicas de Cultura de Células , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/microbiologia , Fibrose/veterinária , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Lactação , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , RNA Mensageiro/biossíntese , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Fatores de Tempo , Regulação para Cima/genética
14.
Ultrasonics ; 143: 107417, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39106661

RESUMO

Ultrasonic scalpels (USs), as the preferred energy instruments, are facing a growing need to exhibit enhanced performance with the diversification of modern surgical challenges. Hence, we proposed an acoustic black hole ultrasonic scalpel (ABHUS) in longitudinal-bending coupled vibration for efficient surgical cutting. By incorporating an acoustic black hole profile, the local bending wave velocity is reduced and the amplitude is amplified cumulatively, thus creating a high-energy region near the blade tip to enhance the cutting performance of the ABHUS. The precise physical analysis model is established for systematic design of the ABHUS and quick estimation of its frequency characteristics. The vibration simulation and experiments demonstrate that compared with the conventional ultrasonic scalpel (CUS), the output amplitude of the ABHUS significantly increases, particularly a 425% increase in bending vibration displacement. The in-vitro cutting experiment confirms that ABHUS exhibits superior cutting performance. Our design presents vast possibilities and potential for the development of high-performance ultrasonic surgical instruments, serving as an innovative supplement with extraordinary significance for application of acoustic black holes.

15.
J Pharm Biomed Anal ; 251: 116418, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39180893

RESUMO

The deregulation of amino acid and polyamine metabolism is a hallmark of malignancy that regulates cancer cell proliferation, angiogenesis, and invasion. A sensitive mass spectrometry method was developed to simultaneously quantify 10 cancer-associated metabolites in pleural effusion cells for the diagnosis of malignancy and to complement conventional pleural cytology. Analytes were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) using C8-reversed-phase HPLC for separation and sequential window acquisition of all theoretical fragment ion spectra (SWATH) acquisition for obtaining high-resolution quantitative MS/MS chromatograms. This method was validated and applied to pleural effusion cells from patients with lung adenocarcinoma (LUAD, n = 48) and those from benign controls (n = 23). The range of the above metabolites was 2-200 ng/mL for proline, aspartate, ornithine, creatine, glutamine, glutamate, arginine, citrulline, and spermine and 10-1000 ng/mL for putrescine. The intra-assay and inter-assay coefficient of variation was below 13.70 % for all analytes. The joint detection of these metabolites in pleural effusion cells achieved a clinical sensitivity of 75.0 % and specificity of 95.7 % differentiating LUAD patients from benign controls. This assay enabled the detection of 10 cancer-associated metabolites in pleural effusion cells, and the increased concentration of these metabolites was correlated with the presence of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Aminoácidos , Neoplasias Pulmonares , Poliaminas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Poliaminas/análise , Poliaminas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Aminoácidos/análise , Aminoácidos/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/diagnóstico , Masculino , Espectrometria de Massas em Tandem/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/diagnóstico , Sensibilidade e Especificidade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Reprodutibilidade dos Testes
16.
Sci Total Environ ; 946: 174117, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38908592

RESUMO

Mechanochemical techniques have been garnering growing attention in remediation of contaminated soil. This paper summarizes the performance, mechanism, influential factors, and environmental impacts of mechanochemical remediation (MCR) for persistent organic pollutants (POPs) contaminated soil and heavy metal(loid) s (HMs) contaminated soil. Firstly, in contrast to other technologies, MCR can achieve desirable treatment of POPs, HMs, and co-contaminated soil, especially with high-concentration pollutants. Secondly, POPs undergo mineralization via interaction with mechanically activated substances, where aromatic and aliphatic pollutants in soil may go through varied degradation routes; inorganic pollutants can be firmly combined with soil particles by fragmentation and agglomeration induced by mechanical power, during which additives may enhance the combination but their contact with anionic metal(loid)s may be partially suppressed. Thirdly, the effect of MCR primarily hinges on types of milling systems, the accumulation of mechanical energy, and the use of reagents, which is basically regulated through operating parameters: rotation speed, ball-to-powder ratio, reagent-to-soil ratio, milling time, and soil treatment capacity; minerals like clay, metal oxides, and sand in soil itself are feasible reagents for remediation, and alien additives play a crucial role in synergist and detoxification; additionally, various physicochemical properties of soil might influence the mechanochemical effect to varying degrees, yet the key influential performance and mechanism remain unclear and require further investigation. Concerning the assessment of soil after treatment, attention needs to be paid to soil properties, toxicity of POPs' intermediates and leaching HMs, and long-term appraisement, particularly with the introduction of aggressive additives into the system. Finally, proposals for current issues and forthcoming advancements in this domain are enumerated in items. This review provides valuable insight into mechanochemical approaches for performing more effective and eco-friendly remediation on contaminated soil.

17.
Sci Total Environ ; 947: 174654, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992387

RESUMO

Soil mineral is one of the important factors that affecting oxidant decomposition and pollutants degradation in soil remediation. In this study, the effects of iron minerals, manganese minerals and clay minerals on the degradation of chlorpyrifos (CPF) and its intermediate product 3,5,6-trichloro-2-pyridinol (TCP) by microwave (MW) activated peroxymonosulfate (PMS) were investigated. As a result, the addition of minerals had slight inhibitory effect on the degradation efficiency of CPF by MW/PMS, but the degradation efficiency of TCP was improved by the addition of some specific minerals, including ferrihydrite, birnessite, and random symbiotic mineral of pyrolusite and ramsdellite (Pyr-Ram). The stronger MW absorption ability of minerals is beneficial for PMS decomposition, but the MW absorption ability of minerals cannot be fully utilized because of the weaker MW radiation intensity under constant temperature conditions. Through electron spin resonance test, quenching experiment and electrochemical experiment, electron transfer, SO4- and OH, SO4- dominated TCP degradation by MW/PMS with the addition of birnessite, Pyr-Ram and ferrihydrite, respectively. Besides, the adsorption effect of ferrihydrite also enhanced the removal of TCP. The redox of Mn (III)/Mn (IV) or Fe (II)/Fe (III) in manganese/iron minerals participated in the generation of reactive species. In addition, the addition of minerals not only increased the variety of alkyl hydroxylation products of CPF, causing different degradation pathways from CPF to TCP, but also further degraded TCP to dechlorination or hydroxylation products. This study demonstrated the synergistic effect of minerals and MW for PMS activation, provided new insights for the effects of soil properties on soil remediation by MW activated PMS technology.

18.
mSystems ; 9(3): e0000824, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426796

RESUMO

The crucial function of circulating microbial DNA (cmDNA) in peripheral blood is gaining recognition because of its importance in normal physiology and immunity in healthy individuals. Evidence suggests that cmDNA in peripheral blood is derived from highly abundant, translocating gut microbes. However, the associations with and differences between cmDNA in peripheral blood and the gut microbiome remain unclear. We collected blood, urine, and fecal samples from volunteers to compare their microbial information via 16S rDNA sequencing. The results revealed that, compared with gut microbial DNA, cmDNA in peripheral blood was associated with reduced diversity and a distinct microbiota composition. The cmDNA in the blood reflects the biochemical processes of microorganisms, including synthesis, energy conversion, degradation, and adaptability, surpassing that of fecal samples. Interestingly, cmDNA in blood showed a limited presence of DNA from anaerobes and gram-positive bacteria, which contrast with the trend observed in fecal samples. Furthermore, analysis of cmDNA revealed traits associated with mobile elements and potential pathologies, among others, which were minimal in stool samples. Notably, cmDNA analysis indicated similarities between the microbial functions and phenotypes in blood and urine samples, although greater diversity was observed in urine samples. Source Tracker analysis suggests that gut microbes might not be the main source of blood cmDNA, or a selective mechanism allows only certain microbial DNA into the bloodstream. In conclusion, our study highlights the composition and potential functions associated with cmDNA in peripheral blood, emphasizing its selective presence; however, further research is required to elucidate the mechanisms involved.IMPORTANCEOur research provides novel insights into the unique characteristics and potential functional implications of circulating microbial DNA (cmDNA) in peripheral blood. Unlike other studies that analyzed sequencing data from fecal or blood microbiota in different study cohorts, our comparative analysis of cmDNA from blood, urine, and fecal samples from the same group of volunteers revealed a distinct blood-specific cmDNA composition. We discovered a decreased diversity of microbial DNA in blood samples compared to fecal samples as well as an increased presence of biochemical processes microbial DNA in blood. Notably, we add to the existing knowledge by documenting a reduced abundance of anaerobes and gram-positive bacteria in blood compared to fecal samples according to the analysis of cmDNA and gut microbial DNA, respectively. This observation suggested that a potential selective barrier or screening mechanism might filter microbial DNA molecules, indicating potential selectivity in the translocation process which contrasts with the traditional view that cmDNA primarily originates from random translocation from the gut and other regions. By highlighting these differences, our findings prompt a reconsideration of the origin and role of cmDNA in blood circulation and suggest that selective processes involving more complex biological mechanisms may be involved.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fezes/química , Microbioma Gastrointestinal/genética , DNA Ribossômico/análise , Análise de Sequência de DNA
19.
J Hazard Mater ; 469: 133880, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430592

RESUMO

This study comprehensively investigated mercury (Hg) contents of various environmental compartments in a typical antimony-coal mining area with intensive industrial activities over the past 120 years to analyze Hg environmental behaviors and evaluate Hg risks. The total mercury (THg) contents in river water, sediments, soils, PM10, dust falls, vegetables and corns were 1.16 ± 0.63 µg/L, 2.01 ± 1.64 mg/kg, 1.87 ± 3.88 mg/kg, 7.87 ± 18.68 ng/m3, 13.01 ± 14.53 mg/kg, 0.30 ± 0.34 mg/kg and 3.11 ± 0.51 µg/kg, respectively. The δ202Hg values in soils and dust falls were - 1.58 ∼ 0.12‰ and 0.25 ∼ 0.30‰, respectively. Environmental samples affected by industrial activities in the Xikuangshan (XKS) presented higher THg and δ202Hg values. Binary mixing model proved that atmospheric deposition with considerable Hg deposition flux (0.44 ∼ 6.40, 3.12 ± 2.20 mg/m2/y) in the XKS significantly contributed to Hg accumulations on surface soils. Compared with soils, sediments with more frequent paths and higher burst probabilities presented higher dynamic Hg risks. Children were faced higher health risk of multiple Hg exposure than adults. Furthermore, the health risk of THg by consuming leaf vegetables deserved more attention. These findings provided scientific basis for managing Hg contamination.


Assuntos
Minas de Carvão , Mercúrio , Criança , Humanos , Mercúrio/análise , Antimônio , Ecossistema , Mineração , Monitoramento Ambiental , Sedimentos Geológicos , Solo , Verduras , Poeira
20.
Micromachines (Basel) ; 15(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38930638

RESUMO

In this work, phase-apodized silicon grating filters with varying sidewall corrugation width and location were investigated, while the resonance wavelength, extinction ratio, and rejection bandwidth were tuned flexibly. The grating filters with a waveguide width of 500 nm and grating period of 400 nm were fabricated and characterized as a proof of concept. The resonance wavelength of the device can be shifted by 4.54 nm by varying the sidewall corrugation width from 150 to 250 nm. The corresponding rejection bandwidth can be changed from 1.19 to 2.03 nm by applying a sidewall corrugation location offset from 50 to 200 nm. The experimental performances coincide well with the simulation results. The presented sidewall corrugation-modulated apodized grating can be expected to have great application prospects for optical communications and semiconductor lasers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa