Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arthroscopy ; 36(8): 2215-2228.e2, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302651

RESUMO

PURPOSE: To compare the efficacy of mesenchymal stem cell (MSC) exosomes with hyaluronic acid (HA) against HA alone for functional cartilage regeneration in a rabbit osteochondral defect model. METHODS: Critical-size osteochondral defects (4.5-mm diameter and 1.5-mm depth) were created on the trochlear grooves in the knees of 18 rabbits and were randomly allocated to 2 treatment groups: (1) exosomes and HA combination and (2) HA alone. Three 1-mL injections of either exosomes and HA or HA alone were administered intra-articularly immediately after surgery and thereafter at 7 and 14 days after surgery. At 6 and 12 weeks, gross evaluation, histologic and immunohistochemical analysis, and scoring were performed. The functional biomechanical competence of the repaired cartilage also was evaluated. RESULTS: Compared with defects treated with HA, defects treated with exosomes and HA showed significant improvements in macroscopic scores (P = .032; P = .001) and histologic scores (P = .005; P < .001) at 6 and 12 weeks, respectively. Defects treated with exosomes and HA also demonstrated improvements in mechanical properties compared with HA-treated defects, with significantly greater Young's moduli (P < .05) and stiffness (P < .05) at 6 and 12 weeks. By 12 weeks, the newly-repaired tissues in defects treated with exosomes and HA composed mainly of hyaline cartilage that are mechanically and structurally superior to that of HA-treated defects and demonstrated mechanical properties that approximated that of adjacent native cartilage (P > .05). In contrast, HA-treated defects showed some repair at 6 weeks, but this was not sustained, as evidenced by significant deterioration of histologic scores (P = .002) and a plateau in mechanical properties from 6 to 12 weeks. CONCLUSIONS: This study shows that the combination of MSC exosomes and HA administered at a clinically acceptable frequency of 3 intra-articular injections can promote sustained and functional cartilage repair in a rabbit post-traumatic cartilage defect model, when compared with HA alone. CLINICAL RELEVANCE: Human MSC exosomes and HA administered in combination promote functional cartilage repair and may represent a promising cell-free therapy for cartilage repair in patients.


Assuntos
Doenças das Cartilagens/terapia , Cartilagem Articular/cirurgia , Exossomos , Ácido Hialurônico/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Animais , Doenças das Cartilagens/patologia , Módulo de Elasticidade , Feminino , Humanos , Injeções Intra-Articulares , Células-Tronco Mesenquimais/citologia , Coelhos
2.
Clin Orthop Relat Res ; 471(4): 1174-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22826014

RESUMO

BACKGROUND: Management of osteochondritis dissecans remains a challenge. Use of oligo[poly(ethylene glycol)fumarate] (OPF) hydrogel scaffold alone has been reported in osteochondral defect repair in small animal models. However, preclinical evaluation of usage of this scaffold alone as a treatment strategy is limited. QUESTIONS/PURPOSES: We therefore (1) determined in vitro pore size and mechanical stiffness of freeze-dried and rehydrated freeze-dried OPF hydrogels, respectively; (2) assessed in vivo gross defect filling percentage and histologic findings in defects implanted with rehydrated freeze-dried hydrogels for 2 and 4 months in a porcine model; (3) analyzed highly magnified histologic sections for different types of cartilage repair tissues, subchondral bone, and scaffold; and (4) assessed neotissue filling percentage, cartilage phenotype, and Wakitani scores. METHODS: We measured pore size of freeze-dried OPF hydrogel scaffolds and mechanical stiffness of fresh and rehydrated forms. Twenty-four osteochondral defects from 12 eight-month-old micropigs were equally divided into scaffold and control (no scaffold) groups. Gross and histologic examination, one-way ANOVA, and one-way Mann-Whitney U test were performed at 2 and 4 months postoperatively. RESULTS: Pore sizes ranged from 20 to 433 µm in diameter. Rehydrated freeze-dried scaffolds had mechanical stiffness of 1 MPa. The scaffold itself increased percentage of neotissue filling at both 2 and 4 months to 58% and 54%, respectively, with hyaline cartilage making up 39% of neotissue at 4 months. CONCLUSIONS: Rehydrated freeze-dried OPF hydrogel can enhance formation of hyaline-fibrocartilaginous mixed repair tissue of osteochondral defects in a porcine model. CLINICAL RELEVANCE: Rehydrated freeze-dried OPF hydrogel alone implanted into cartilage defects is insufficient to generate a homogeneously hyaline cartilage repair tissue, but its spacer effect can be enhanced by other tissue-regenerating mediators.


Assuntos
Cartilagem Articular/cirurgia , Fêmur/cirurgia , Fumaratos/farmacologia , Osteocondrite Dissecante/cirurgia , Polietilenoglicóis/farmacologia , Cicatrização/efeitos dos fármacos , Análise de Variância , Animais , Cartilagem Articular/patologia , Modelos Animais de Doenças , Fêmur/patologia , Hidrogel de Polietilenoglicol-Dimetacrilato , Osteocondrite Dissecante/patologia , Estatísticas não Paramétricas , Suínos , Porco Miniatura , Alicerces Teciduais
3.
Cartilage ; 13(2): 19476035221093063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446156

RESUMO

OBJECTIVE: The zonal properties of articular cartilage critically contribute to the mechanical support and lubrication of the tissue. Current treatments for articular cartilage have yet to regenerate this zonal architecture, thus compromising the functional efficacy of the repaired tissue and leading to tissue degeneration in the long term. In this study, the efficacy of zonal cartilage regeneration through bilayered implantation of expanded autologous zonal chondrocytes was investigated in a porcine chondral defect model. DESIGN: Autologous chondrocytes extracted from articular cartilage in the non-weight bearing trochlea region of the knee were subjected to an expansion-sorting strategy, integrating dynamic microcarrier (dMC) culture, and spiral microchannel size-based zonal chondrocyte separation. Zonal chondrocytes were then implanted as bilayered fibrin hydrogel construct in a porcine knee chondral defect model. Repair efficacy was compared with implantation with cell-free fibrin hydrogel and full thickness (FT) cartilage-derived heterogenous chondrocytes. Cartilage repair was evaluated 6 months after implantation. RESULTS: Sufficient numbers of zonal chondrocytes for implantation were generated from the non-weight bearing cartilage. Six-month repair outcomes showed that bilayered implantation of dMC-expanded zonal chondrocytes resulted in substantial recapitulation of zonal architecture, including chondrocyte arrangement, specific Proteoglycan 4 distribution, and collagen alignment, that was accompanied by healthier underlying subchondral bone. CONCLUSION: These results demonstrate that with appropriate expansion and isolation of zonal chondrocytes, the strategy of stratified zonal chondrocyte implantation represents a significant advancement to Autologous Chondrocyte Implantation-based cartilage regeneration, with the potential to improve the long-term integrity of the regenerated tissues.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Animais , Cartilagem Articular/cirurgia , Condrócitos , Fibrina , Hidrogéis , Suínos
4.
Am J Sports Med ; 50(3): 788-800, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35099327

RESUMO

BACKGROUND: Previous studies have reported the efficacy of human mesenchymal stem cell (MSC) exosomes for the repair of osteochondral defects in rats and rabbits. However, the safety and efficacy of MSC exosomes remain to be validated in a clinically relevant large animal model. PURPOSE: To validate the safety and efficacy of human MSC exosomes for osteochondral repair in a clinically relevant micropig model. STUDY DESIGN: Controlled laboratory study. METHODS: Bilateral osteochondral defects (6-mm diameter and 1-mm depth) were surgically created in the medial femoral condyles in knees of 12 micropigs. The pigs then received 2-mL intra-articular injections of MSC exosomes and hyaluronic acid (HA) (Exosome+HA) or HA alone after surgery and thereafter at 8 and 15 days. Osteochondral repair was assessed by magnetic resonance imaging (MRI) at 15 days and at 2 and 4 months after surgery as well as by macroscopic, histological, biomechanical, and micro-computed tomography (micro-CT) analyses at 4 months after surgery. RESULTS: Exosome+HA-treated defects demonstrated significantly better MRI scores than HA-treated defects at 15 days and at 2 and 4 months. Additionally, Exosome+HA-treated defects demonstrated functional cartilage and subchondral bone repair, with significantly better macroscopic and histological scores and biomechanical properties (Young modulus and stiffness) than HA-treated defects at 4 months. Micro-CT further showed significantly higher bone volume and trabecular thickness in the subchondral bone of Exosome+HA-treated defects than that of HA-treated defects. Importantly, no adverse response or major systemic alteration was observed in any of the animals. CONCLUSION: This study shows that the combination of MSC exosomes and HA administered at a clinically acceptable frequency of 3 weekly intra-articular injections can promote functional cartilage and subchondral bone repair, with significantly improved morphological, histological, and biomechanical outcomes in a clinically relevant porcine model. CLINICAL RELEVANCE: Our findings provide a robust scientific rationale to support a phase 1/2 clinical trial to test MSC exosomes in patients with osteochondral lesions.


Assuntos
Cartilagem Articular , Exossomos , Células-Tronco Mesenquimais , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Humanos , Ácido Hialurônico , Coelhos , Ratos , Suínos , Microtomografia por Raio-X
5.
Am J Sports Med ; 48(7): 1735-1747, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32191492

RESUMO

BACKGROUND: Articular cartilage has a zonal architecture and biphasic mechanical properties. The recapitulation of surface lubrication properties with high compressibility of the deeper layers of articular cartilage during regeneration is essential in achieving long-term cartilage integrity. Current clinical approaches for cartilage repair, especially with the use of mesenchymal stem cells (MSCs), have yet to restore the hierarchically organized architecture of articular cartilage. HYPOTHESIS: MSCs predifferentiated on surfaces with specific nanotopographic patterns can provide phenotypically stable and defined chondrogenic cells and, when delivered as a bilayered stratified construct at the cartilage defect site, will facilitate the formation of functionally superior cartilage tissue in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: MSCs were subjected to chondrogenic differentiation on specific nanopatterned surfaces. The phenotype of the differentiated cells was assessed by the expression of cartilage markers. The ability of the 2-dimensional nanopattern-generated chondrogenic cells to retain their phenotypic characteristics after removal from the patterned surface was tested by subjecting the enzymatically harvested cells to 3-dimensional fibrin hydrogel culture. The in vivo efficacy in cartilage repair was demonstrated in an osteochondral rabbit defect model. Repair by bilayered construct with specific nanopattern predifferentiated cells was compared with implantation with cell-free fibrin hydrogel, undifferentiated MSCs, and mixed-phenotype nanopattern predifferentiated MSCs. Cartilage repair was evaluated at 12 weeks after implantation. RESULTS: Three weeks of predifferentiation on 2-dimensional nanotopographic patterns was able to generate phenotypically stable chondrogenic cells. Implantation of nanopatterned differentiated MSCs as stratified bilayered hydrogel constructs improved the repair quality of cartilage defects, as indicated by histological scoring, mechanical properties, and polarized microscopy analysis. CONCLUSION: Our results indicate that with an appropriate period of differentiation, 2-dimensional nanotopographic patterns can be employed to generate phenotypically stable chondrogenic cells, which, when implanted as stratified bilayered hydrogel constructs, were able to form functionally superior cartilage tissue. CLINICAL RELEVANCE: Our approach provides a relatively straightforward method of obtaining large quantities of zone-specific chondrocytes from MSCs to engineer a stratified cartilage construct that could recapitulate the zonal architecture of hyaline cartilage, and it represents a significant improvement in current MSC-based cartilage regeneration.


Assuntos
Cartilagem Articular/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Células Cultivadas , Condrogênese , Fibrina , Hidrogéis , Modelos Animais , Fenótipo , Coelhos , Engenharia Tecidual/métodos
6.
J Biomed Mater Res B Appl Biomater ; 108(6): 2450-2460, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32017424

RESUMO

A variety of controlled release carriers for bone morphogenetic protein 2 (BMP-2) delivery have been developed and tested in animal models. An alginate-based polyelectrolyte complex (PEC) for controlled release of low-dose BMP-2 has shown promising results in preclinical research. However, the poor handling properties and long-term stability of PEC need to be improved for translational applications. This study aimed to address these limitations of alginate-based PEC by employing a freeze-drying technique. The size and structure of freeze-dried PEC (FD-PEC) were maintained with the addition of a cryoprotectant, trehalose. The release profile of BMP-2 from FD-PEC was similar to that of freshly prepared PEC. In vitro bioactivity analysis of the released BMP-2 showed that the carrier performance of PEC was not compromised by freeze-drying up to three-month storage at room temperature. BMP-2-bound FD-PEC induced comparable bone formation to that using freshly prepared regular PEC in a rat posterolateral spinal fusion model. These results suggest that FD-PEC is capable of delivering low-dose BMP-2 and could be developed as an off-the-shelf product for translational applications. The simplicity of this preservation method provides promise for the translational application of PEC.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Liofilização/métodos , Polieletrólitos/química , Alginatos , Animais , Crioprotetores , Portadores de Fármacos , Implantes de Medicamento , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fusão Vertebral , Trealose
7.
Stem Cell Reports ; 14(1): 105-121, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31902704

RESUMO

Human mesenchymal stem cell (hMSC) therapy offers significant potential for osteochondral regeneration. Such applications require their ex vivo expansion in media frequently supplemented with fibroblast growth factor 2 (FGF2). Particular heparan sulfate (HS) fractions stabilize FGF2-FGF receptor complexes. We show that an FGF2-binding HS variant (HS8) accelerates the expansion of freshly isolated bone marrow hMSCs without compromising their naivety. Importantly, the repair of osteochondral defects in both rats and pigs is improved after treatment with HS8-supplemented hMSCs (MSCHS8), when assessed histologically, biomechanically, or by MRI. Thus, supplementing hMSC culture media with an HS variant that targets endogenously produced FGF2 allows the elimination of exogenous growth factors that may adversely affect their therapeutic potency.


Assuntos
Glicosaminoglicanos/administração & dosagem , Transplante de Células-Tronco , Animais , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Relação Dose-Resposta a Droga , Expressão Gênica , Perfilação da Expressão Gênica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Homeostase do Telômero/efeitos dos fármacos
8.
Tissue Eng Part A ; 25(23-24): 1677-1689, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31337284

RESUMO

Bone morphogenetic protein 2 (BMP-2) is widely used in spinal fusion but it can cause adverse effects such as ectopic bone and adipose tissue in vivo. Neural epidermal growth factor like-like molecule-1 (NELL-1) has been shown to suppress BMP-2-induced adverse effects. However, no optimum carriers that control both NELL-1 and BMP-2 releases to elicit long-term bioactivity have been developed. In this study, we employed polyelectrolyte complex (PEC) as a control release carrier for NELL-1 and BMP-2. An ultra-low dose of BMP-2 synergistically functioned with NELL-1 on bone marrow mesenchymal stem cells osteogenic differentiation with greater mineralization in vitro. The osteoinductive ability of NELL-1 and an ultra-low dose of BMP-2 in PEC was investigated in rat posterolateral spinal fusion. Our results showed increased fusion rate, bone architecture, and improved bone stiffness at 8 weeks after surgery in the combination groups compared with NELL-1 or BMP-2 alone. Moreover, the formation of ectopic bone and adipose tissue was negligible in all the PEC groups. In summary, dual delivery of NELL-1 and an ultra-low dose of BMP-2 in the PEC control release carrier has greater fusion efficiency compared with BMP-2 alone and could potentially be a better alternative to the currently used BMP-2 treatments for spinal fusion. Impact Statement In this study, polyelectrolyte complex was used to absorb neural epidermal growth factor like-like molecule-1 (NELL-1) and bone morphogenetic protein 2 (BMP-2) to achieve controlled dual release. The addition of NELL-1 significantly reduced the effective dose of BMP-2 to 2.5% of its conventional dose in absorbable collagen sponge, to produce solid spinal fusion without significant adverse effects. This study was the first to identify the efficacy of combination NELL-1 and BMP-2 in a control release carrier in spinal fusion, which could be potentially used clinically to increase fusion rate and avoid the adverse effects commonly associated with conventional BMP-2.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Fusão Vertebral , Animais , Fenômenos Biomecânicos , Proteínas de Ligação ao Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Fibrinogênio/metabolismo , Osteogênese/efeitos dos fármacos , Polieletrólitos/química , Ratos Sprague-Dawley , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiologia , Suínos , Alicerces Teciduais/química , Microtomografia por Raio-X
9.
Tissue Eng Part A ; 25(5-6): 352-363, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30351222

RESUMO

IMPACT STATEMENT: Repairing damaged joint cartilage remains a significant challenge. Treatment involving microfracture, tissue grafting, or cell therapy provides some benefit, but seldom regenerates lost articular cartilage. Providing a point-of-care solution that is cell and tissue free has the potential to transform orthopedic treatment for such cases. Glycosaminoglycans such as heparan sulfate (HS) are well suited for this purpose because they provide a matrix that enhances the prochondrogenic activities of growth factors normally found at sites of articular damage. In this study, we show the potential of a novel HS device, which is free of exogenous cells or growth factors, in regenerating osteochondral defects.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Condrócitos/patologia , Heparitina Sulfato/farmacologia , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/cirurgia , Condrócitos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Imageamento por Ressonância Magnética , Masculino , Coelhos , Suínos , Cicatrização/efeitos dos fármacos
10.
Tissue Eng Part A ; 25(19-20): 1356-1368, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30727849

RESUMO

Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been widely used in spine fusion surgery. However, high doses of rhBMP-2 delivered with absorbable collagen sponge (ACS) have led to inflammation-related adverse conditions. Polyelectrolyte complex (PEC) control release carrier can substantially reduce the rhBMP-2 dose and complication without compromising fusion. The molecular events underlying controlled release and their effects on spinal fusion remain unknown. In this study, a rabbit interbody spinal fusion chamber was designed to provide a controlled environment for profiling molecular events during the fusion process. Study groups included Group 1, PEC with 100 µg rhBMP-2; Group 2, ACS with 100 µg rhBMP-2; Group 3, ACS with 300 µg rhBMP-2; Group 4, autologous bone graft; and Group 5, empty chamber. Manual palpation, microcomputed tomography, and histological analysis showed that Group 1 and 3 achieved bone fusion, while the other groups showed no signs of fusion. Gene expression profiling showed robust induction of osteogenic markers in Groups 1 and 3, with modulated early induction of inflammatory genes in the PEC group. Delivery of 100 µg rhBMP-2 with ACS (Group 2) resulted in less upregulation of osteogenic genes, increased inflammatory genes expression, and upregulation of osteoclastic genes compared to Group 1. These results suggest that the manner of BMP-2 release at the interbody spinal defect site could dictate the balance of in-situ osteogenic and antiosteogenic activities, affecting fusion outcomes. The molecular evidence supports PEC for sustained release of BMP-2 for spinal interbody fusion, and the feasibility of employing this novel interbody spinal fusion chamber for future molecular studies. Impact Statement A radiolucent rabbit interbody spinal fusion chamber was developed to study the molecular events during spinal fusion process. The gene expression profile suggests that control release of bone morphogenetic protein-2 (BMP-2) resulted in lower inflammatory and osteoclastic activities, but elicited higher osteogenic activities, while burst release of BMP-2 resulted in predominantly inflammation and osteoclastogenesis with minimum osteogenic activity. This study provides the molecular evidence that underscores the regeneration outcomes from the two different BMP-2 delivery systems. This spinal fusion chamber could be used for future molecular studies to optimize carrier design for spinal fusion.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fusão Vertebral , Fator de Crescimento Transformador beta/farmacologia , Animais , Biomarcadores/metabolismo , Preparações de Ação Retardada/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Implantes Experimentais , Inflamação/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/genética , Polieletrólitos/química , Coelhos , Proteínas Recombinantes/farmacologia , Seroma/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Microtomografia por Raio-X
11.
Biomaterials ; 165: 66-78, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518707

RESUMO

Current clinical approaches for articular cartilage repair have not been able to restore the tissue with zonal architecture, and its biomechanical and functional properties. Mimicking the zonal organization of articular cartilage in neo-tissue by implanting zonal chondrocyte subpopulations in multilayer construct could enhance the functionality of the graft, engineering of stratified tissue has not yet been realized due to lack of efficient and specific zonal chondrocyte isolation protocol. We show that by using a spiral microchannel device, the superficial, middle and deep zone chondrocytes can be separated based on cell size, and enriched from full thickness porcine cartilage in a high-throughput, label-free manner. The size-sorted cells show zone-specific characteristics in RT-PCR analysis of zonal cartilage markers. Both freshly sorted and two-passage expanded zonal chondrocytes formed cartilage tissue in 3D hydrogel, bearing respective zonal characteristics, indicated by RT-PCR, histology, extracellular matrix proteins, and mechanical compression test. In the proof-of-concept in vivo study using a rodent cartilage defect model, the size-sorted zonal chondrocytes when delivered in bi-layered hydrogel construct, facilitated better cartilage repair with mechanically enhanced cartilage tissue, in comparison to conventional chondrocytes implantation. This study provides an effective approach to obtain large numbers of zonal chondrocytes, and demonstrates the translational potential of stratified zonal chondrocyte implantation for clinical repair of critical size cartilage defects.


Assuntos
Cartilagem Articular/fisiologia , Condrócitos , Regeneração , Alicerces Teciduais , Animais , Condrócitos/citologia , Ratos Sprague-Dawley , Engenharia Tecidual
12.
Tissue Eng Part A ; 19(15-16): 1852-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23517496

RESUMO

Current surgical techniques for osteochondral injuries in young active patients are inadequate clinically. Novel strategies in tissue engineering are continuously explored in this area. Despite numerous animal studies that have shown encouraging results, very few large-scale clinical trials have been done to address this area of interest. To facilitate the eventual translation from rabbit to human subjects, we have performed a study using bone marrow-derived mesenchymal stem cell (BMSC)-oligo[poly(ethylene glycol) fumarate] (OPF) hydrogel scaffold in a porcine model. Our objective was to analyze the morphology of BMSCs seeded into rehydrated freeze-dried OPF hydrogel and in vivo gross morphological and histological outcome of defects implanted with the BMSCs-OPF scaffold in a porcine model. The analyses were based on magnified histologic sections for different types of cartilage repair tissues, the outcome of the subchondral bone, scaffold, and statistical assessment of neotissue-filling percentage, cartilage phenotype, and Wakitani scores. The morphology of the BMSCs seeded into the rehydrated freeze-dried OPF scaffold was observed 24 h after cell seeding, through the phase-contrast microscope. The three-dimensional and cross-sectional structure of the fabrication was analyzed through confocal microscopy and histological methods, respectively. The BMSCs remained viable and were condensed into many pellet-like cell masses with a diameter ranging from 28.5 to 298.4 (113.5±47.9) µm in the OPF scaffold. In vivo osteochondral defect repair was tested in 12 defects created in six 8-month-old Prestige World Genetics micropigs. The implantation of scaffold alone was used for control. Gross morphological, histological, and statistical analyses were performed at 4 months postoperatively. The scaffold-MSC treatment led to 99% defect filling, with 84% hyaline-like cartilage at 4 months, which was significantly (p<0.0001) more than the 54% neotissue filling and 39% hyaline-like cartilage obtained in the scaffold-only group. The implantation of BMSCs in freeze-dried OPF hydrogel scaffold, which created a conducive environment for cell infiltration and clustering, could fully repair chondral defects with hyaline-like cartilage. This protocol provides a clinically feasible procedure for osteochondral defect treatment.


Assuntos
Células da Medula Óssea/citologia , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Células Cultivadas , Feminino , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa