Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(22): e2306536, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38168889

RESUMO

Effective strategies toward building exquisite nanostructures with enhanced structural integrity and improved reaction kinetics will carry forward the practical application of alloy-based materials as anodes in batteries. Herein, a free-standing 3D carbon nanofiber (CNF) skeleton incorporated with heterostructured binary metal selenides (ZnSe/SnSe) nanoboxes is developed for Na-ion storage anodes, which can facilitate Na+ ion migration, improve structure integrity, and enhance the electrochemical reaction kinetics. During the carbonization and selenization process, selenium/nitrogen (Se/N) is co-doped into the 3D CNF skeleton, which can improve the conductivity and wettability of the CNF matrices. More importantly, the ZnSe/SnSe heterostructures and the Se/N co-doping CNFs can have a synergistic interfacial coupling effect and built-in electric field in the heterogeneous interfaces of ZnSe/SnSe hetero-boundaries as well as the interfaces between the CNF matrix and the selenide heterostructures, which can enable fast ion/electron transport and accelerate surface/internal reaction kinetics for Na-ion storage. The ZnSe/SnSe@Se,N-CNFs exhibit superior Na-ion storage performance than the comparative ZnSe/SnSe, ZnSe and SnSe powders, which deliver an excellent rate performance (882.0, 773.6, 695.7, 634.2, and 559.0 mAh g-1 at current rates of 0.1, 0.2, 0.5, 1, and 2 A g-1) and long-life cycling stability of 587.5 mAh g-1 for 3500 cycles at 2 A g-1.

2.
Small ; : e2311520, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299465

RESUMO

LiCoO2 (LCO) cathode materials have attracted significant attention for its potential to provide higher energy density in current Lithium-ion batteries (LIBs). However, the structure and performance degradation are exacerbated by increasing voltage due to the catastrophic reaction between the applied electrolyte and delithiated LCO. The present study focuses on the construction of physically and chemically robust Mg-integrated cathode-electrolyte interface (MCEI) to address this issue, by incorporating Magnesium bis(trifluoromethanesulfonyl)imide (Mg[TFSI]2 ) as an electrolyte additive. During formation cycles, the strong MCEI is formed and maintained its 2 nm thickness throughout long-term cycling. Notably, Mg is detected not only in the robust MCEI, but also imbedded in the surface of the LCO lattice. As a result, the parasitic interfacial side reactions, surface phase reconstruction, particle cracking, Co dissolution and shuttling are considerably suppressed, resulting in long-term cycling stability of LCO up to 4.5 V. Therefore, benefit from the double protection of the strong MCEI, the Li||LCO coin cell and the Ah-level Graphite||LCO pouch cell exhibit high capacity retention by using Mg-electrolyte, which are 88.13% after 200 cycles and 90.4% after 300 cycles, respectively. This work provides a novel approach for the rational design of traditional electrolyte additives.

3.
Chem Rev ; 122(6): 5604-5640, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35023737

RESUMO

Tissue engineering is a promising and revolutionary strategy to treat patients who suffer the loss or failure of an organ or tissue, with the aim to restore the dysfunctional tissues and enhance life expectancy. Supramolecular adhesive hydrogels are emerging as appealing materials for tissue engineering applications owing to their favorable attributes such as tailorable structure, inherent flexibility, excellent biocompatibility, near-physiological environment, dynamic mechanical strength, and particularly attractive self-adhesiveness. In this review, the key design principles and various supramolecular strategies to construct adhesive hydrogels are comprehensively summarized. Thereafter, the recent research progress regarding their tissue engineering applications, including primarily dermal tissue repair, muscle tissue repair, bone tissue repair, neural tissue repair, vascular tissue repair, oral tissue repair, corneal tissue repair, cardiac tissue repair, fetal membrane repair, hepatic tissue repair, and gastric tissue repair, is systematically highlighted. Finally, the scientific challenges and the remaining opportunities are underlined to show a full picture of the supramolecular adhesive hydrogels. This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Adesivos/química , Materiais Biocompatíveis/química , Humanos , Hidrogéis/química
4.
Nanotechnology ; 35(29)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38593763

RESUMO

In this work, an advanced hybrid material was constructed by incorporating niobium pentoxide (Nb2O5) nanocrystals with nitrogen-doped carbon (NC) derived from ZIF-8 dodecahedrons, serving as a support, referred to as Nb2O5/NC. Pt nanocrystals were dispersed onto Nb2O5/NC using a simple impregnation reduction method. The obtained Pt/Nb2O5/NC electrocatalyst showed high oxygen reduction reaction (ORR) activity due to three-phase mutual contacting structure with well-dispersed Pt and Nb2O5NPs. In addition, the conductive NC benefits electron transfer, while the induced Nb2O5can regulate the electronic structure of Pt element and anchor Pt nanocrystals, thereby enhancing the ORR activity and stability. The half-wave potential (E1/2) for Pt/Nb2O5/NC is 0.886 V, which is higher than that of Pt/NC (E1/2= 0.826 V). The stability examinations demonstrated that Pt/Nb2O5/NC exhibited higher electrocatalytic durability than Pt/NC. Our work provides a new direction for synthesis and structural design of precious metal/oxides hybrid electrocatalysts.

5.
Angew Chem Int Ed Engl ; : e202405017, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749917

RESUMO

The controllable anchoring of multiple metal single-atoms (SAs) into a single support exhibits scientific and technological opportunities, while marrying the concentration-complex multimetallic SAs and high-entropy SAs (HESAs) into one SAC system remains a substantial challenge. Here, we present a substrate-mediated SAs formation strategy to successfully fabricate a library of multimetallic SAs and HESAs on MoS2 and MoSe2 supports, which can precisely control the doping location of SAs. Specially, the contents of SAs can continuously increase until the accessible Mo atoms on TMDs carriers are completely replaced by SAs, thus allowing the of much higher metal contents. In-depth mechanistic study shows that the well-controlled synthesis of multimetallic SAs and HESAs is realized by controlling the reversible redox reaction occurred on the TMDs/TM ion interface. As a proof-of-concept application, a variety of SAs-TMDs were applied to hydrogen evolution reaction. The optimized HESAs-TMDs (Pt,Ru,Rh,Pd,Re-MoSe2) delivers a much higher activity and durability than state of-the-art Pt. Thus, our work will broaden the family of single-atom catalysts and provide a new guideline for the rational design of high-performance single-atom catalysts.

6.
Small ; 19(48): e2304750, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37537155

RESUMO

Replacing high-cost and scarce platinum (Pt) with transition metal and nitrogen co-doped carbon (M/N/C, M = Fe, Co, Mn, and so on) catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells has largely been impeded by the unsatisfactory ORR activity of M/N/C due to the low site utilization and inferior intrinsic activity of the M─N4 active center. Here, these limits are overcome by using a sacrificial bimetallic pyrolysis strategy to synthesize Fe─N─C catalyst by implanting the Cd ions in the backbone of ZIF-8, leading to exposure of inaccessible FeN4 edge sites (that is, increasing active site density (SD)) and high fast mass transport at the catalyst layer of cathode. As a result, the final obtained Fe(Cd)─N─C catalyst has an active site density of 33.01 µmol g-1 (with 33.01% site utilization) over 5.8 times higher than that of Fe─N─C catalyst. Specially, the optimal catalyst delivers a high ORR performance with a half-wave potential of 0.837 (vs RHE) in a 0.1 m HClO4 electrolyte, which surpasses most of Fe-based catalysts.

7.
Small ; 19(12): e2205283, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581564

RESUMO

Single-atom catalysts based on metal-N4 moieties and embedded in a graphite matrix (defined as MNC) are promising for oxygen reduction reaction (ORR). However, the performance of MNC catalysts is still far from satisfactory due to their imperfect adsorption energy to oxygen species. Herein, single-atom FeNC is leveraged as a model system and report an adjacent Ru-N4 moiety modulation effect to optimize the catalyst's electronic configuration and ORR performance. Theoretical simulations and physical characterizations reveal that the incorporation of Ru-N4 sites as the modulator can alter the d-band electronic energy of Fe center to weaken the FeO binding affinity, thus resulting in the lower adsorption energy of ORR intermediates at Fe sites. Thanks to the synergetic effects of neighboring Fe and Ru single-atom pairs, the FeN4 /RuN4 catalyst exhibits a half-wave potential of 0.958 V and negligible activity degradation after 10 000 cycles in 0.1 m KOH. Metal-air batteries using this catalyst in the cathode side exhibit a high power density of 219.5 mW cm-2 and excellent cycling stability for over 2370 h, outperforming the state-of-the-art catalysts.

8.
Nanotechnology ; 34(22)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36857776

RESUMO

Oxygen evolution reaction (OER) is a necessary procedure in various devices including water splitting and rechargeable metal-air batteries but required a higher potential to improve oxygen evolution efficiency due to its slow reaction kinetics. In order to solve this problem, a heterostructured electrocatalyst (Co3O4@FeOx/CC) is synthesized by deposition of iron oxides (FeOx) on carbon cloth (CC) via plasma-enhanced atomic layer deposition, then growth of the cobalt oxide (Co3O4) nanosheet arrays. The deposition cycle of FeOxon the CC strongly influences thein situgrowth and distribution of Co3O4nanosheets and electronic conductivity of the electrocatalyst. Owing to the high accessible and electroactive areas and improved electrical conductivity, the free-standing electrode of Co3O4@FeOx/CC with 100 deposition cycles of FeOxexhibits excellent electrocatalytic performance for OER with a low overpotential of 314.0 mV at 10 mA cm-2and a small Tafel slope of 29.2 mV dec-1in alkaline solution, which is much better than that of Co3O4/CC (448 mV), and even commercial RuO2(380 mV). This design and optimization strategy shows a promising way to synthesize ideally designed catalytic architectures for application in energy storage and conversion.

9.
Angew Chem Int Ed Engl ; 62(3): e202214117, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36377044

RESUMO

Cu-Li batteries leveraging the two-electron redox property of Cu can offer high energy density and low cost. However, Cu-Li batteries are plagued by limited solubility and a shuttle effect of Cu ions in traditional electrolytes, which leads to low energy density and poor cycling stability. In this work, we rationally design a solid-state sandwich electrolyte for solid-state Cu-Li batteries, in which a deep-eutectic-solvent gel with high Cu-ion solubility is devised as a Cu-ion reservoir while a ceramic Li1.4 Al0.4 Ti1.6 (PO4 )3 interlayer is used to block Cu-ion crossover. Because of the high ionic conductivity (0.55 mS cm-1 at 25 °C), wide electrochemical window (>4.5 V vs. Li+ /Li), and high Cu ion solubility of solid-state sandwich electrolyte, a solid-state Cu-Li battery demonstrates a high energy density of 1 485 Wh kgCu -1 and long-term cyclability with 97 % capacity retention over 120 cycles. The present study lays the groundwork for future research into low-cost solid-state Cu-Li batteries.

10.
Small ; 18(1): e2104958, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825485

RESUMO

The efficiency of CO2 electroreduction has been largely limited by the activity of the catalysts as well as the three-phase interface. Herein, a multiscale strategy is proposed to synthesize hierarchical nanofibers covered by carbon nanotubes and embedded with cobalt nanoparticles (Co/CNT/HCNF). The confinement effect of carbon nanotubes can restrict the diameter of the cobalt particles down to several nanometers and prevent the easy corrosion of these nanoparticles. The three-dimensional carbon nanofibers, in size range of several hundred nanometers, improve the electrochemically active surface area, facilitate electron transfer, and accelerate CO2 transportation. These cross-linked carbon nanofibers eventually form a freestanding Co/CNT/HCNF membrane of dozens of square centimeters. Consequently, Co/CNT/HCNF produces CO with 97% faradaic efficiency at only -0.4 VRHE cathode potential in an H-type cell. From the regulation of catalyst nanostructure to the design of macrography devices, Co/CNT/HCNF membrane can be directly used as the gas-diffusion compartment in a flow cell device. Co/CNT/HCNF membrane generates CO with faradaic efficiencies higher than 90% and partial current densities greater than 300 mA cm-2 for at least 100-h stability. This strategy provides a successful example of efficient catalysts for CO2 electroreduction and also has the feasibility in other self-standing energy conversion devices.

11.
Small ; 16(25): e2002210, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32452633

RESUMO

The widely used route of high-temperature pyrolysis for transformation of Prussian blue analogs (PBAs) to functional nanomaterials leads to the fast removal of CN- ligands, and thus the formation of large metal aggregates and the loss of porous structures inside PBAs. Here, a controllable pyrolysis route at low temperature is reported for retaining the confined effect of CN- ligands to metal cations during the whole pyrolysis process, thereby preparing high-surface-area cubes comprising disordered bimetallic oxides (i.e., Co3 O4 and Fe2 O3 ) nanoparticles. The disordered structure of Co3 O4 enables the exposure of abundant oxygen vacancies. Notably, for the first time, it is found that the in situ generated CoOOH during the oxygen evolution reaction (OER) can inherit the oxygen vacancies of pristine Co3 O4 (i.e., before OER), and such CoOOH with abundant oxygen vacancies adsorbs two - OH in the following Co3+ to Co4+ for markedly promoting OER. However, during the similar step, the ordered Co3 O4 with less oxygen vacancies only involves one - OH, resulting in the additional overpotentials for adsorbing - OH. Consequently, with high surface area and disordered Co3 O4 , the as-synthesized electrocatalysts have a low potential of 237 mV at 10 mA cm-2 , surpassing most of reported electrocatalysts.

12.
Nanotechnology ; 31(45): 454001, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32721938

RESUMO

Herein, Li-rich layered oxides (LLOs) are modified by sulfide solid electrolyte Li10GeP2S12 (LGPS) with high ionic conductivity to enhance the diffusion of Li+ and an ultrathin Al2O3 layer is interposed between LLOs and LGPS through the atomic layer deposition (ALD) technique to inhibit the development of the highly resistive space-charge layer, the side reactions and structure transition of the composites, thus excellently promoting the electrochemical properties of the composites in liquid electrolyte. Among the different ALD cycles of Al2O3, 10 cycles of ultrathin Al2O3 layer achieves the greatest electrochemical performance. The beginning discharge capacity of LLOs@Al2O3/LGPS composites comes up to 233.4 mA h g-1 with a capacity retention of 90.6% and a voltage retention of 97.3% after 100 cycles at 0.2 C. The composites also exhibit the optimal rate capability and a high energy density of 581 Wh kg-1 at 1 C. The galvanostatic intermittent titration technique test indicates that the composites (LLOs@Al2O3/LGPS) possess the greatest Li+ diffusion coefficient (1.58 × 10-10 cm2 s-1) compared to LLOs (0.85 × 10-10 cm2 s-1) and LLOs/LGPS (1.10 × 10-10 cm2 s-1). More importantly, charge curves at the beginning of the initial charge and electrochemical impedance spectroscopy curves clearly reveal the inhibition of the development of the highly resistive space-charge layer.

13.
Angew Chem Int Ed Engl ; 59(43): 19054-19059, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686303

RESUMO

Previous density-functional theory (DFT) calculations show that sub-nanometric Cu clusters (i.e., 13 atoms) favorably generate CH4 from the CO2 reduction reaction (CO2 RR), but experimental evidence is lacking. Herein, a facile impregnation-calcination route towards Cu clusters, having a diameter of about 1.0 nm with about 10 atoms, was developed by double confinement of carbon defects and micropores. These Cu clusters enable high selectivity for the CO2 RR with a maximum Faraday efficiency of 81.7 % for CH4 . Calculations and experimental results show that the Cu clusters enhance the adsorption of *H and *CO intermediates, thus promoting generation of CH4 rather than H2 and CO. The strong interactions between the Cu clusters and defective carbon optimize the electronic structure of the Cu clusters for selectivity and stability towards generation of CH4 . Provided here is the first experimental evidence that sub-nanometric Cu clusters facilitate the production of CH4 from the CO2 RR.

14.
J Colloid Interface Sci ; 664: 168-177, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460381

RESUMO

Ammonium vanadate with stable bi-layered structure and superior mass-specific capacity have emerged as competitive cathode materials for aqueous rechargeable zinc-ion batteries (AZIBs). Nevertheless, fragile NH…O bonds and too strong electrostatic interaction by virtue of excessive NH4+ will lead to sluggish Zn2+ ion mobility, further largely affects the electro-chemical performance of ammonium vanadate in AZIBs. The present work incorporates polypyrrole (PPy) to partially replace NH4+ in NH4V4O10 (NVO), resulting in the significantly enlarged interlayers (from 10.1 to 11.9 Å), remarkable electronic conductivity, increased oxygen vacancies and reinforced layered structure. The partial removal of NH4+ will alleviate the irreversible deammoniation to protect the laminate structures from collapse during ion insertion/extraction. The expanded interlayer spacing and the increased oxygen vacancies by the virtue of the introduction of polypyrrole improve the ionic diffusion, enabling exceptional rate performance of NH4V4O10. As expected, the resulting polypyrrole intercalated ammonium vanadate (NVOY) presents a superior discharge capacity of 431.9 mAh g-1 at 0.5 A g-1 and remarkable cycling stability of 219.1 mAh g-1 at 20 A g-1 with 78 % capacity retention after 1500 cycles. The in-situ electrochemical impedance spectroscopy (EIS), in-situ X-ray diffraction (XRD), ex-situ X-ray photoelectron spectroscopy (XPS) and ex-situ high resolution transmission electron microscopy (HR-TEM) analysis investigate a highly reversible intercalation Zn-storage mechanism, and the enhanced the redox kinetics are related to the combined effect of interlayer regulation, high electronic conductivity and oxygen defect engineering by partial substitution NH4+ of PPy incorporation.

15.
ACS Nano ; 17(17): 16854-16869, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37622922

RESUMO

Diabetic foot ulcers (DFUs) remain a devastating threat to human health. While hydrogels are promising systems for DFU-based wound management, their effectiveness is often hindered by the immune response and hostile wound microenvironment associated with the uncontrollable accumulation of reactive oxygen species and hypoxia. Here, we develop a therapeutic wound dressing using a biomimetic hydrogel system with the decoration of catalase-mimic nanozyme, namely, MnCoO@PDA/CPH. The hydrogel can be designed to match the mechanical and electrical cues of skins simultaneously with H2O2-activated oxygenation ability. As a proof of concept, DFU-based rat models are created to validate the therapeutic efficacy of the MnCoO@PDA/CPH hydrogel in vivo. The results indicate that the developed hydrogel can promote DFU healing and improve the quality of the healed wound as featured by alleviated proinflammatory, increased re-epithelialization, highly ordered collagen deposition, and functional blood vessel growth.


Assuntos
Diabetes Mellitus , Peróxido de Hidrogênio , Humanos , Animais , Ratos , Biomimética , Bandagens , Hidrogéis/farmacologia
16.
Nanoscale ; 15(5): 2435, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36656034

RESUMO

Correction for 'Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode' by Zhisen Zeng et al., Nanoscale, 2021, 13, 12223-12232, https://doi.org/10.1039/d1nr02620h.

17.
Nanomicro Lett ; 15(1): 48, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36773092

RESUMO

Rechargeable zinc-air batteries (ZABs) are a promising energy conversion device, which rely critically on electrocatalysts to accelerate their rate-determining reactions such as oxygen reduction (ORR) and oxygen evolution reactions (OER). Herein, we fabricate a range of bifunctional M-N-C (metal-nitrogen-carbon) catalysts containing M-Nx coordination sites and M/MxC nanoparticles (M = Co, Fe, and Cu) using a new class of γ-cyclodextrin (CD) based metal-organic framework as the precursor. With the two types of active sites interacting with each other in the catalysts, the obtained Fe@C-FeNC and Co@C-CoNC display superior alkaline ORR activity in terms of low half-wave (E1/2) potential (~ 0.917 and 0.906 V, respectively), which are higher than Cu@C-CuNC (~ 0.829 V) and the commercial Pt/C (~ 0.861 V). As a bifunctional electrocatalyst, the Co@C-CoNC exhibits the best performance, showing a bifunctional ORR/OER overpotential (ΔE) of ~ 0.732 V, which is much lower than that of Fe@C-FeNC (~ 0.831 V) and Cu@C-CuNC (~ 1.411 V), as well as most of the robust bifunctional electrocatalysts reported to date. Synchrotron X-ray absorption spectroscopy and density functional theory simulations reveal that the strong electronic correlation between metallic Co nanoparticles and the atomic Co-N4 sites in the Co@C-CoNC catalyst can increase the d-electron density near the Fermi level and thus effectively optimize the adsorption/desorption of intermediates in ORR/OER, resulting in an enhanced bifunctional electrocatalytic performance. The Co@C-CoNC-based rechargeable ZAB exhibited a maximum power density of 162.80 mW cm-2 at 270.30 mA cm-2, higher than the combination of commercial Pt/C + RuO2 (~ 158.90 mW cm-2 at 265.80 mA cm-2) catalysts. During the galvanostatic discharge at 10 mA cm-2, the ZAB delivered an almost stable discharge voltage of 1.2 V for ~ 140 h, signifying the virtue of excellent bifunctional ORR/OER electrocatalytic activity.

18.
Chem Sci ; 14(9): 2330-2335, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36873834

RESUMO

Azonaphthalenes have been verified as a class of effective arylation reagents in a variety of asymmetric transformations. Here a highly efficient approach to construct triaryl-substituted all-carbon quaternary stereocenters through chiral phosphoric acid-catalyzed enantioselective arylation of 3-aryl-2-oxindoles with azonaphthalenes is disclosed. This chemistry is scalable and displays excellent functional group tolerance, furnishing a series of 3,3-disubstituted 2-oxindole derivatives in good yields with excellent enantiocontrol. Preliminary mechanistic data suggest that the initially formed direct addition intermediate undergoes intramolecular annulation under acidic reaction conditions.

19.
J Colloid Interface Sci ; 652(Pt A): 529-539, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607415

RESUMO

Achieving practical applications of PEO-based composite solid electrolyte (CPE) batteries requires the precise design of filler structures at the molecular level to form stable composite interfacial phases, which in turn improve the conductivity of Li+ and inhibit the nucleation growth of lithium dendrites. Some functional fillers suffer from severe agglomeration due to poor compatibility with the polymer base or grain boundary migration, resulting in limited improvement in cell performance. In this paper, ILs@KAP1 is reported as a filler to enhance the performance of PEO-based batteries. Thereinto, the hypercrosslinked phosphorus ligand polymer-containing KAP1, designed at the molecular level, has an abundant porous structure, hydrogen bonding network, and a rigid skeleton structure of benzene rings. These can be used both to improve the flammability with PEO-based and to reduce the crystallinity of the polymer electrolyte. Ionic liquids (ILs) are encapsulated in the nanochannels of KAP1, and thus a 3D Li+ conducting framework could be formed. In this case, it could not only facilitate the wettability of the contact interface with the electrode, significantly promoting its compatibility and providing a fast Li+ transport path, but also facilitate the formation of LiF, Li3N and Li2O rich SEI components, further fostering the uniform deposition/exfoliation of lithium. The LFP||CPE||Li battery assembled with ILs@KAP1-PEO-CPE has a high initial discharge specific capacity about 156 mAh/g at 1C and a remaining capacity about 121.8 mAh/g after 300 cycles (capacity retention of 78.07%).

20.
Natl Sci Rev ; 10(12): nwad252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941734

RESUMO

High energy density and high safety are incompatible with each other in a lithium battery, which challenges today's energy storage and power applications. Ni-rich layered transition metal oxides (NMCs) have been identified as the primary cathode candidate for powering next-generation electric vehicles and have been extensively studied in the last two decades, leading to the fast growth of their market share, including both polycrystalline and single-crystal NMC cathodes. Single-crystal NMCs appear to be superior to polycrystalline NMCs, especially at low Ni content (≤60%). However, Ni-rich single-crystal NMC cathodes experience even faster capacity decay than polycrystalline NMC cathodes, rendering them unsuitable for practical application. Accordingly, this work will systematically review the attenuation mechanism of single-crystal NMCs and generate fresh insights into valuable research pathways. This perspective will provide a direction for the development of Ni-rich single-crystal NMC cathodes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa