Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 19(2): 242-254, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145319

RESUMO

Despite advances in imaging, image-based vascular systems biology has remained challenging because blood vessel data are often available only from a single modality or at a given spatial scale, and cross-modality data are difficult to integrate. Therefore, there is an exigent need for a multimodality pipeline that enables ex vivo vascular imaging with magnetic resonance imaging, computed tomography and optical microscopy of the same sample, while permitting imaging with complementary contrast mechanisms from the whole-organ to endothelial cell spatial scales. To achieve this, we developed 'VascuViz'-an easy-to-use method for simultaneous three-dimensional imaging and visualization of the vascular microenvironment using magnetic resonance imaging, computed tomography and optical microscopy in the same intact, unsectioned tissue. The VascuViz workflow permits multimodal imaging with a single labeling step using commercial reagents and is compatible with diverse tissue types and protocols. VascuViz's interdisciplinary utility in conjunction with new data visualization approaches opens up new vistas in image-based vascular systems biology.


Assuntos
Encéfalo/irrigação sanguínea , Imagem Multimodal/métodos , Biologia de Sistemas/métodos , Animais , Encéfalo/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Circulação Cerebrovascular , Meios de Contraste , Visualização de Dados , Feminino , Hemodinâmica , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
2.
Angiogenesis ; 27(1): 105-119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032405

RESUMO

The healing of calvarial bone defects is a pressing clinical problem that involves the dynamic interplay between angiogenesis and osteogenesis within the osteogenic niche. Although structural and functional vascular remodeling (i.e., angiogenic evolution) in the osteogenic niche is a crucial modulator of oxygenation, inflammatory and bone precursor cells, most clinical and pre-clinical investigations have been limited to characterizing structural changes in the vasculature and bone. Therefore, we developed a new multimodality imaging approach that for the first time enabled the longitudinal (i.e., over four weeks) and dynamic characterization of multiple in vivo functional parameters in the remodeled vasculature and its effects on de novo osteogenesis, in a preclinical calvarial defect model. We employed multi-wavelength intrinsic optical signal (IOS) imaging to assess microvascular remodeling, intravascular oxygenation (SO2), and osteogenesis; laser speckle contrast (LSC) imaging to assess concomitant changes in blood flow and vascular maturity; and micro-computed tomography (µCT) to validate volumetric changes in calvarial bone. We found that angiogenic evolution was tightly coupled with calvarial bone regeneration and corresponded to distinct phases of bone healing, such as injury, hematoma formation, revascularization, and remodeling. The first three phases occurred during the initial two weeks of bone healing and were characterized by significant in vivo changes in vascular morphology, blood flow, oxygenation, and maturity. Overall, angiogenic evolution preceded osteogenesis, which only plateaued toward the end of bone healing (i.e., four weeks). Collectively, these data indicate the crucial role of angiogenic evolution in osteogenesis. We believe that such multimodality imaging approaches have the potential to inform the design of more efficacious tissue-engineering calvarial defect treatments.


Assuntos
Regeneração Óssea , Crânio , Microtomografia por Raio-X , Crânio/diagnóstico por imagem , Crânio/irrigação sanguínea , Crânio/lesões , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Cicatrização
3.
Microvasc Res ; 148: 104518, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36894024

RESUMO

Assessing intravascular blood oxygen saturation (SO2) is crucial for characterizing in vivo microenvironmental changes in preclinical models of injury and disease. However, most conventional optical imaging techniques for mapping in vivo SO2 assume or compute a single value of the optical path-length in tissue. This is especially detrimental when mapping in vivo SO2 in experimental disease or wound healing models that are characterized by vascular and tissue remodeling. Therefore, to circumvent this limitation we developed an in vivo SO2 mapping technique that utilizes hemoglobin-based intrinsic optical signal (IOS) imaging combined with a vascular-centric estimation of optical path-lengths. In vivo arterial and venous SO2 distributions derived with this approach closely matched those reported in the literature, while those derived using the single path-length (i.e. conventional) approach did not. Moreover, in vivo cerebrovascular SO2 strongly correlated (R2 > 0.7) with changes in systemic SO2 measured with a pulse oximeter during hypoxia and hyperoxia paradigms. Finally, in a calvarial bone healing model, in vivo SO2 assessed over four weeks was spatiotemporally correlated with angiogenesis and osteogenesis (R2 > 0.6). During the early stages of bone healing (i.e. day 10), angiogenic vessels surrounding the calvarial defect exhibited mean SO2 that was elevated by10 % (p < 0.05) relative to that observed at a later stage (i.e., day 26), indicative of their role in osteogenesis. These correlations were not evident with the conventional SO2 mapping approach. The feasibility of our wide field-of-view in vivo SO2 mapping approach illustrates its potential for characterizing the microvascular environment in applications ranging from tissue engineering to cancer.


Assuntos
Hiperóxia , Saturação de Oxigênio , Humanos , Oximetria/métodos , Oxigênio , Artérias
4.
Am J Physiol Cell Physiol ; 323(5): C1524-C1538, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189973

RESUMO

Vascularization is a crucial step during musculoskeletal tissue regeneration via bioengineered constructs or grafts. Functional vasculature provides oxygen and nutrients to the graft microenvironment, facilitates wound healing, enhances graft integration with host tissue, and ensures the long-term survival of regenerating tissue. Therefore, imaging de novo vascularization (i.e., angiogenesis), changes in microvascular morphology, and the establishment and maintenance of perfusion within the graft site (i.e., vascular microenvironment or VME) can provide essential insights into engraftment, wound healing, as well as inform the design of tissue engineering (TE) constructs. In this review, we focus on state-of-the-art imaging approaches for monitoring the VME in craniofacial TE applications, as well as future advances in this field. We describe how cutting-edge in vivo and ex vivo imaging methods can yield invaluable information regarding VME parameters that can help characterize the effectiveness of different TE constructs and iteratively inform their design for enhanced craniofacial bone regeneration. Finally, we explicate how the integration of novel TE constructs, preclinical model systems, imaging techniques, and systems biology approaches could usher in an era of "image-based tissue engineering."


Assuntos
Osso e Ossos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Regeneração Óssea , Neovascularização Patológica , Cicatrização , Alicerces Teciduais , Neovascularização Fisiológica
5.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617372

RESUMO

Calvarial nerves, along with vasculature, influence skull formation during development and following injury, but it remains unclear how calvarial nerves are spatially distributed during postnatal growth and aging. Studying the spatial distribution of nerves in the skull remains challenging due to a lack of methods to image and quantify 3D structures in intact bone. To visualize calvarial 3D neurovascular architecture, we imaged nerves and endothelial cells with lightsheet microscopy. We employed machine-learning-based segmentation to facilitate high-resolution characterization from post-natal day 0 (P0) to Week 80 (80wk). We found that TUBB3+ nerve density decreased with aging with the frontal bone demonstrating earlier onset age-related nerve loss than the parietal bone. In addition, nerves in the periosteum and dura mater exhibited similar yet distinct temporal patterns of nerve growth and loss. While no difference was observed in TUBB3+ nerves during skeletal maturation (P0 → 12wk), we did observe an increase in the volume of unmyelinated nerves in the dura mater. Regarding calvarial vasculature, larger CD31hiEmcn- vessel density increased with aging, while CD31hiEmcnhi vessel density was reduced. For all nerve markers studied, calvarial nerves maintained a preferential spatial association with CD31hiEmcnhi vessels that decreased with aging. Additionally, we used a model of Apert syndrome that demonstrates early coronal suture fusion to explore the impact of suture-related disease on neurovascular architecture. We identified a mild dysregulation of dural nerves and minor shifts in vessel populations. Collectively, this 3D, spatiotemporal characterization of calvarial nerves throughout the lifespan and provides new insights into age-induced neurovascular architecture.

6.
Biomicrofluidics ; 7(3): 34110, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24404030

RESUMO

The usability of many high-throughput lab-on-a-chip devices in point-of-care applications is currently limited by the manual data acquisition and analysis process, which are labor intensive and time consuming. Based on our original design in the biochemical reactions, we proposed here a universal approach to perform automatic, fast, and robust analysis for high-throughput array-based microfluidic immunoassays. Inspired by two-dimensional (2D) barcodes, we incorporated asymmetric function patterns into a microfluidic array. These function patterns provide quantitative information on the characteristic dimensions of the microfluidic array, as well as mark its orientation and origin of coordinates. We used a computer program to perform automatic analysis for a high-throughput antigen/antibody interaction experiment in 10 s, which was more than 500 times faster than conventional manual processing. Our method is broadly applicable to many other microchannel-based immunoassays.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa