Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biol Lett ; 8(6): 1012-5, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22977068

RESUMO

Recent studies predict that the Arctic Ocean will have ice-free summers within the next 30 years. This poses a significant challenge for the marine organisms associated with the Arctic sea ice, such as marine mammals and, not least, the ice-associated crustaceans generally considered to spend their entire life on the underside of the Arctic sea ice. Based upon unique samples collected within the Arctic Ocean during the polar night, we provide a new conceptual understanding of an intimate connection between these under-ice crustaceans and the deep Arctic Ocean currents. We suggest that downwards vertical migrations, followed by polewards transport in deep ocean currents, are an adaptive trait of ice fauna that both increases survival during ice-free periods of the year and enables re-colonization of sea ice when they ascend within the Arctic Ocean. From an evolutionary perspective, this may have been an adaptation allowing success in a seasonally ice-covered Arctic. Our findings may ultimately change the perception of ice fauna as a biota imminently threatened by the predicted disappearance of perennial sea ice.


Assuntos
Adaptação Biológica/fisiologia , Anfípodes/fisiologia , Mudança Climática , Camada de Gelo , Movimento/fisiologia , Movimentos da Água , Anfípodes/química , Animais , Regiões Árticas , Lipídeos/análise , Biologia Marinha , Modelos Teóricos
2.
Sci Total Environ ; 542(Pt A): 108-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26519572

RESUMO

The aim of the present study was to investigate seasonal variation in persistent organic pollutant (POP) concentrations, as well as food-web biomagnification, in an Arctic, benthic marine community. Macrozoobenthos, demersal fish and common eiders were collected both inside and outside of Kongsfjorden, Svalbard, during May, July and October 2007. The samples were analysed for a selection of legacy chlorinated POPs. Overall, low levels of POPs were measured in all samples. Although POP levels and accumulation patterns showed some seasonal variation, the magnitude and direction of change was not consistent among species. Overall, seasonality in bioaccumulation in benthic biota was less pronounced than in the pelagic system in Kongsfjorden. In addition, the results indicate that δ(15)N is not a good predictor for POP-levels in benthic food chains. Other factors, such as feeding strategy (omnivory, necrophagy versus herbivory), degree of contact with the sediment, and a high dependence on particulate organic matter (POM), with low POP-levels and high δ(15)N-values (due to bacterial isotope enrichment), seem to govern the uptake of the different POPs and result in loads deviating from what would be expected consulting the trophic position alone.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Poluentes Químicos da Água/análise , Animais , Regiões Árticas , Peixes/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Estações do Ano , Svalbard , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricos , Zooplâncton/metabolismo
3.
Aquat Toxicol ; 127: 21-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22310169

RESUMO

In the Barents Sea, the limited data on biological relevant indicators and their responses to various anthropogenic stressors have hindered the development of a consistent scientific basis for selecting indicator species and developing practical procedures for environmental monitoring. Accordingly, the main aim of the present study was to develop a common set of baseline values for contaminants and biomarkers in three species, and to identify their strengths and limitations in monitoring of the Barents Sea. Blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua) were sampled from a north Norwegian fjord in March, June, September and December 2010. Digestive glands from the bivalve species and liver from Atlantic cod were analysed for biomarkers of oxidative stress (catalase [CAT], glutathione peroxidase [GPX], glutathione-S-transferase activities [GST], lipid peroxidation as thiobarbituric reactive substances [TBARS] and total oxyradical scavenging capacity [TOSC]), biotransformation (ethoxyresorufine-O-deethylase activity [EROD]) and general stress (lysosomal membrane stability [LMS]). Concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals in the bivalves and PAH metabolites in fish bile were quantified. Finally, energy reserves (total lipids, proteins and carbohydrates) and electron transport system (ETS) activity in the digestive gland of the bivalves and liver of Atlantic cod provided background information for reproductive cycle and general physiological status of the organisms. Blue mussel and Icelandic scallop showed very similar trends in biological cycle, biomarker expression and seasonality. Biomarker baselines in Atlantic cod showed weaker seasonal variability. However, important biological events may have been undetected due to the large time intervals between sampling occasions. Physiological biomarkers such as energy reserves and ETS activity were recommended as complementary parameters to the commonly used stress biomarkers, as they provided valuable information on the physiological status of the studied organisms. Interpretation of the seasonality in oxidative stress biomarkers was in general difficult but TOSC and lipid peroxidation were preferred over the antioxidant enzyme activities. This study is the first reporting seasonal baseline in these three species in a sub-Arctic location. Overall, the Icelandic scallop was considered the most adequate organism for environmental monitoring in the Barents Sea due to the interpretability of the biomarker data as well as its abundance, ease to handle and wide distribution from the southern Barents Sea to Svalbard.


Assuntos
Biomarcadores/análise , Monitoramento Ambiental , Gadus morhua/fisiologia , Mytilus edulis/fisiologia , Pectinidae/fisiologia , Estações do Ano , Animais , Gadus morhua/metabolismo , Mytilus edulis/metabolismo , Oceanos e Mares , Pectinidae/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Oecologia ; 80(1): 82-6, 1989 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23494349

RESUMO

Published studies of consumer feeding preferences using foods that experience autogenic change in mass, numbers, area, etc., on the time scale of a feeding trial fail to employ appropriate statistical analyses to incorporate controls for those food changes occurring in the absence of the consumer. The studies that run controls typically use them to calculate a constant "correction factor", which is subtracted prior to formal data analysis. This procedure constitutes a non-rigorous suppression of variance that overstates the statistical significance of observed differences. The appropriate statistical analysis for preference tests with two foods is usually a simple t-test performed on the between-food differences in loss of mass (or numbers, area, etc.) comparing the results of experimentals with consumers to controls without consumers. Application of this recommended test procedure to an actual data set illustrates how low replication in controls, which is typical of most studies of feeding preference, inhibits detection of an apparently large influence of previous mechanical damage (simulated grazing) in reducing the attractiveness of a brown alga to a sea urchin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa