Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(24): 247203, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26197003

RESUMO

We demonstrate that a C(60) overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the (60)/Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a function of the (60) coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between (60) p(z) and Co d(z(2)) orbitals. By generalizing these arguments, we also demonstrate that the hybridization of (60) with a Fe(110) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material-ferromagnet systems.

2.
J Chem Phys ; 139(20): 204703, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24289365

RESUMO

We demonstrate the capability to build zero and one-dimensional electroactive molecular nanostructures ordered over a macroscopic scale and stable under ambient conditions. To realize these arrays, we use the selective grafting of functionalized thiols (juglon and terthiophene based) on a self-organized metallic template. The nanoscale patterning of the molecular conductance is demonstrated and analyzed by scanning tunneling spectroscopy. Finally, the influence of the nanostructuring on electro-chemical properties is measured, paving the way to an all-bottom-up fabrication of nanostructured templates for nanosciences.


Assuntos
Metais/química , Nanoestruturas/química , Compostos de Sulfidrila/química , Condutividade Elétrica , Modelos Moleculares , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Propriedades de Superfície
3.
Nano Lett ; 12(9): 4558-63, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22827486

RESUMO

Using organic materials in spintronic devices raises a lot of expectation for future applications due to their flexibility, low cost, long spin lifetime, and easy functionalization. However, the interfacial hybridization and spin polarization between the organic layer and the ferromagnetic electrodes still has to be understood at the molecular scale. Coupling state-of-the-art spin-polarized scanning tunneling spectroscopy and spin-resolved ab initio calculations, we give the first experimental evidence of the spin splitting of a molecular orbital on a single non magnetic C(60) molecule in contact with a magnetic material, namely, the Cr(001) surface. This hybridized molecular state is responsible for an inversion of sign of the tunneling magnetoresistance depending on energy. This result opens the way to spin filtering through molecular orbitals.


Assuntos
Fulerenos/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Impedância Elétrica , Campos Magnéticos
4.
Langmuir ; 28(42): 15095-105, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23016599

RESUMO

We report on the elaboration of networks of SAM domains. More precisely, we show the feasibility in making arrays of functionalized alkylthiol nanodomains bordered with an alkylthiol matrix. The several step process relies on the replication of a self-organized cobalt array grown on Au(111). The SAM process takes place in solution. The chemical affinity of thiol for gold leads to the selective grafting of molecules on the surface. After having removed the inorganic array, alkylthiol functionalized with a terthiophene unit is grafted in free gold areas. The efficiency of the replication of the initial template depends on the stability of the first SAM. We also investigate electronic tunnel transport through oligothiophene islands with the STM. The variation of the molecular contrast with bias voltage between the two molecular species indicates a potential resonant tunneling mechanism through the orbitals of the aromatic compound.

5.
Nat Mater ; 9(3): 235-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20081833

RESUMO

Single-walled carbon nanotubes provide an ideal system for studying the properties of one-dimensional (1D) materials, where strong electron-electron interactions are expected. Optical measurements have recently reported the existence of excitons in semiconducting nanotubes, revealing the importance of many-body effects. Surprisingly, pioneering electronic structure calculations and scanning tunnelling spectroscopy (STS) experiments report the same gap values as optical experiments. Here, an experimental STS study of the bandgap of single-walled semiconducting nanotubes, demonstrates a continuous transition from the gap reduced by the screening resulting from the metal substrate to the intrinsic gap dominated by many-body interactions. These results provide a deeper knowledge of many-body interactions in these 1D systems and a better understanding of their electronic properties, which is a prerequisite for any application of nanotubes in the ultimate device miniaturization for molecular electronics, or spintronics.

6.
J Phys Condens Matter ; 23(4): 045007, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21406881

RESUMO

Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

7.
Phys Rev Lett ; 104(13): 137202, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481908

RESUMO

The magnetic susceptibility of self-organized two-dimensional Co nanodots on Au(111) has been measured as a function of their size in the 2-7 nm diameter range. We show that the activation energy for the thermal reversal displays a power law behavior with the dot volume. Atomic scale simulations based on the Heisenberg Hamiltonian show that this behavior is due to a deviation from the macrospin model for dot size as small as 3 nm in diameter. This discrepancy is attributed to finite temperature effects through the thermal excitation of spin-wave modes inside the particles.

8.
Phys Rev Lett ; 105(5): 056101, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20867936

RESUMO

Using scanning tunneling microscopy and a diffraction experiment, we have discovered a new ordered surface alloy made out of two bulk-immiscible components, Fe and Au, deposited on a Ru(0001) substrate. In such a system, substrate-mediated strain interactions are believed to provide the main driving force for mixing. However, spin-polarized ab initio calculations show that the most stable structures are always the ones with the highest magnetic moment per Fe atom and not the ones minimizing the surface stress, in remarkable agreement with the observations. This opens up novel possibilities for creating materials with unique properties of relevance to device applications.

9.
Phys Rev Lett ; 84(23): 5367-70, 2000 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-10990945

RESUMO

Self-organization on Au(1,1,1) vicinal surfaces provides a unique opportunity to study the interplay between atomic and mesoscopic order. First, experimental results demonstrate the different interactions between steps and surface reconstruction on Au(1,1,1) vicinal surfaces. Depending on the step atomic structure, lines of discommensurations are found to be either parallel or perpendicular to the step edges. This leads to a complete understanding of the mesoscopic self-organization on theses surfaces, which drastically depends on the step structure. This points out the crucial role played by the edge energy cost which can monitor the faceting periodicity in a wide range of values.

10.
Phys Rev Lett ; 103(6): 067202, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19792607

RESUMO

Self-organized Co nanodots on a Au(111) surface have been surrounded by controlled Au rings that progressively cap the entire dots. The magnetic susceptibility of these dots has been measured in situ as a function of the Au coverage. The blocking temperature increases when the Co bilayer dots are surrounded by the first Au atomic layer and decreases with the subsequent capping. This result cannot be explained by interfacial anisotropy which is generally assumed to be the dominant term in the magnetic anisotropy of nanostructures. Using molecular dynamics simulations, we evidence that the large strain inside the Co clusters is the main driving force for the anisotropy changes during the Au encapsulation.

11.
Phys Rev Lett ; 94(20): 207211, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-16090287

RESUMO

As a magnetic domain wall propagates under small fields through a random potential, it roughens as a result of weak collective pinning, known as creep. Using Kerr microscopy, we report experimental evidence of a surprising deroughening of wall pairs in the creep regime, in a 0.5 nm thick Co layer with perpendicular anisotropy. A bound state is found in cases where two rough domains nucleated far away from one another and first growing under the action of a magnetic field eventually do not merge. The two domains remain separated by a strip of unreversed magnetization, characterized by flat edges and stabilized by dipolar fields. A creep theory that includes dipolar interactions between domains successfully accounts for (i) the domain wall deroughening as the width of the strip decreases and (ii) the quasistatic and dynamic field dependence of the strip width s.

12.
Phys Rev Lett ; 95(15): 157204, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16241757

RESUMO

We report on the magnetic properties of two-dimensional Co nanoparticles arranged in macroscopically phase-coherent superlattices created by self-assembly on Au(788). Our particles have a density of 26 Tera/in2 (1 Tera=10(12)), are monodomain, and have uniaxial out-of-plane anisotropy. The distribution of the magnetic anisotropy energies has a half width at half maximum of 17%, a factor of 2 more narrow than the best results reported for superlattices of three-dimensional nanoparticles. Our data show the absence of magnetic interactions between the particles. Co/Au(788) thus constitutes an ideal model system to explore the ultimate density limit of magnetic recording.

13.
Phys Rev Lett ; 87(10): 107601, 2001 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-11531502

RESUMO

STM images show that vicinal Au(788) surfaces are made up of a uniform array of (111)-oriented terraces of similar width ( approximately 3.8 nm). This uniformity makes it possible to study the electronic structure of the resulting step superlattice by angle-resolved photoemission. We show that for this terrace array the surface state appears to be broken up into one-dimensional quantum-well levels, indicating total electron confinement within the terraces. The angular resolution allows the probability density of the terrace quantum well state to be mapped in reciprocal space, complementing nicely the wave function measured in real space by STM.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa