Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(13): 6018-6026, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37352368

RESUMO

Superconducting nanowire single-photon detectors (SNSPDs) have enabled the realization of several quantum optics technologies thanks to their high system detection efficiency (SDE), low dark counts, and fast recovery time. However, the widespread use of linear optical quantum computing, quasi-deterministic single-photon sources, and quantum repeaters requires even faster detectors that can also distinguish between different photon-number states. Here, we present an SNSPD array composed of 14 independent pixels, achieving an SDE of 90% in the telecommunications band. By reading each pixel of the array independently, we show detection of telecommunication photons at 1.5 GHz with 45% absolute SDE. We exploit the dynamic photon-number resolution of the array to demonstrate accurate state reconstruction for a wide range of light inputs, including operation with long-duration light pulses, as obtained with some cavity-based sources. We show two-photon and three-photon fidelities of 74% and 57%, respectively, which represent state-of-the-art results for fiber-coupled SNSPDs.

2.
Nat Photonics ; 17(5): 422-426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37162797

RESUMO

Quantum key distribution has emerged as the most viable scheme to guarantee information security in the presence of large-scale quantum computers and, thanks to the continuous progress made in the past 20 years, it is now commercially available. However, the secret key rates remain limited to just over 10 Mbps due to several bottlenecks on the receiver side. Here we present a custom multipixel superconducting nanowire single-photon detector that is designed to guarantee high count rates and precise timing discrimination. Leveraging the performance of the detector and coupling it to fast acquisition and real-time key distillation electronics, we remove two major roadblocks and achieve a considerable increase of the secret key rates with respect to the state of the art. In combination with a simple 2.5-GHz clocked time-bin quantum key distribution system, we can generate secret keys at a rate of 64 Mbps over a distance of 10.0 km and at a rate of 3.0 Mbps over a distance of 102.4 km with real-time key distillation.

3.
ACS Nano ; 12(7): 7039-7047, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29956911

RESUMO

Atomically thin two-dimensional (2D) materials belonging to transition metal dichalcogenides, due to their physical and electrical properties, are an exceptional vector for the exploration of next-generation semiconductor devices. Among them, due to the possibility of ambipolar conduction, tungsten diselenide (WSe2) provides a platform for the efficient implementation of polarity-controllable transistors. These transistors use an additional gate, named polarity gate, that, due to the electrostatic doping of the Schottky junctions, provides a device-level dynamic control of their polarity, that is, n- or p-type. Here, we experimentally demonstrate a complete doping-free standard cell library realized on WSe2 without the use of either chemical or physical doping. We show a functionally complete family of complementary logic gates (INV, NAND, NOR, 2-input XOR, 3-input XOR, and MAJ) and, due to the reconfigurable capabilities of the single devices, achieve the realization of highly expressive logic gates, such as exclusive-OR (XOR) and majority (MAJ), with fewer transistors than possible in conventional complementary metal-oxide-semiconductor logic. Our work shows a path to enable doping-free low-power electronics on 2D semiconductors, going beyond the concept of unipolar physically doped devices, while suggesting a road to achieve higher computational densities in two-dimensional electronics.

4.
Sci Rep ; 7: 45556, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358019

RESUMO

Two-dimensional semiconducting materials of the transition-metal-dichalcogenide family, such as MoS2 and WSe2, have been intensively investigated in the past few years, and are considered as viable candidates for next-generation electronic devices. In this paper, for the first time, we study scaling trends and evaluate the performances of polarity-controllable devices realized with undoped mono- and bi-layer 2D materials. Using ballistic self-consistent quantum simulations, it is shown that, with the suitable channel material, such polarity-controllable technology can scale down to 5 nm gate lengths, while showing performances comparable to the ones of unipolar, physically-doped 2D electronic devices.

5.
Sci Rep ; 6: 29448, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27390014

RESUMO

As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >10(6) for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa