Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(43): 22703-22713, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27601472

RESUMO

We describe here the identification and functional characterization of the enzyme O-GlcNAcase (OGA) as an RNA polymerase II elongation factor. Using in vitro transcription elongation assays, we show that OGA activity is required for elongation in a crude nuclear extract system, whereas in a purified system devoid of OGA the addition of rOGA inhibited elongation. Furthermore, OGA is physically associated with the known RNA polymerase II (pol II) pausing/elongation factors SPT5 and TRIM28-KAP1-TIF1ß, and a purified OGA-SPT5-TIF1ß complex has elongation properties. Lastly, ChIP-seq experiments show that OGA maps to the transcriptional start site/5' ends of genes, showing considerable overlap with RNA pol II, SPT5, TRIM28-KAP1-TIF1ß, and O-GlcNAc itself. These data all point to OGA as a component of the RNA pol II elongation machinery regulating elongation genome-wide. Our results add a novel and unexpected dimension to the regulation of elongation by the insertion of O-GlcNAc cycling into the pol II elongation regulatory dynamics.


Assuntos
Antígenos de Neoplasias/química , Histona Acetiltransferases/química , Hialuronoglucosaminidase/química , Proteínas Nucleares/química , RNA Polimerase II/química , Proteínas Repressoras/química , Fatores de Elongação da Transcrição/química , Antígenos de Neoplasias/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Hialuronoglucosaminidase/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Elongação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Proteína 28 com Motivo Tripartido
2.
J Pharm Biomed Anal ; 251: 116455, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39232447

RESUMO

Bi-functional N-Hydroxysuccinimide (NHS) linkers are widely used in the conjugation processes linking an immunogen with a carrier protein capable of boosting immunity. A potential vaccine candidate against HIV-1, called fusion peptide (FP), is covalently linked to the recombinant tetanus toxoid heavy-chain fragment C (rTTHC) via this type of linker. A reversed-phase liquid chromatography (RPLC-UV) method was used to monitor the linker's degradation kinetics in various buffers, mimicking the steps in the conjugation process. The kinetics of the reactivities of the linkers are revealed in this study and can provide a good guidance to help effective conjugation process before these linkers are completely hydrolyze to the inactive degradants. Three cross-linkers degradation pathways were evaluated: Sulfosuccinimidyl (4-iodoacetyl) aminobenzoate (Sulfo-SIAB), PEGylated SMCC (SM(PEG)2), and N-γ-maleimidobutyryl-oxysulfosuccinimide ester (Sulfo-GMBS). We have reported kinetics for Sulfo-SIAB.


Assuntos
Cromatografia de Fase Reversa , Polietilenoglicóis , Succinimidas , Cromatografia de Fase Reversa/métodos , Succinimidas/química , Polietilenoglicóis/química , Cinética , Reagentes de Ligações Cruzadas/química , Toxoide Tetânico/química , Proteínas Recombinantes de Fusão/química
3.
Sci Rep ; 14(1): 4534, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402303

RESUMO

Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.


Assuntos
Vacinas contra Influenza , Influenza Humana , Nanopartículas , Humanos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Imunogenicidade da Vacina , Influenza Humana/prevenção & controle , Nanopartículas/química , Ensaios Clínicos como Assunto
5.
Biochem J ; 443(2): 417-26, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22280445

RESUMO

Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,ß-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.


Assuntos
Amônia/metabolismo , Glutamato-Amônia Ligase/metabolismo , Mycobacterium tuberculosis/enzimologia , Sítios de Ligação , Biocatálise , Glutamato-Amônia Ligase/química , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Cinética , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
6.
Biochim Biophys Acta ; 1794(11): 1648-53, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19647806

RESUMO

NAD(+) synthetase catalyzes the formation of NAD(+) from ATP, nicotinic acid adenine dinucleotide and ammonia. Glutamine-dependent NAD(+) synthetase obtains ammonia through the hydrolysis of glutamine to glutamate, which takes place in the glutaminase domain. The ammonia is subsequently transported to the synthetase domain through an interdomain ammonia tunnel. NAD(+) synthetase from the thermophilic bacteria Thermotoga maritima was cloned and expressed. Steady-state kinetics and stoichiometric analysis of product formation revealed an enzyme that is significantly inefficient in the synchronization of the two active sites resulting in wasteful hydrolysis of glutamine and that is not specific for glutamine over ammonia. Phylogenetic analysis of glutamine-dependent NAD(+) synthetases identifies three main groups remotely related. The T. maritima NAD(+) synthetase's group is proposed to represent the ancestral group based on the phylogenetic analysis and on the kinetic characterizations. The phylogenetic results nicely correlate also with the degree of catalytic efficiency measured for M. tuberculosis, S. cerevisiae and T. maritima NAD(+) synthetases. Furthermore, the data here reported in combination with structural data available for glutamine-dependent NAD(+) synthetase lays the foundation for further investigation on the mechanism of active site coupling in these enzymes.


Assuntos
Amida Sintases/metabolismo , Amida Sintases/genética , Amida Sintases/isolamento & purificação , Sequência de Aminoácidos , Glutamina/metabolismo , Temperatura Alta , Mycobacterium tuberculosis/enzimologia , NAD/análogos & derivados , Filogenia , Saccharomyces cerevisiae/enzimologia , Thermotoga maritima/enzimologia
7.
Nat Commun ; 11(1): 16, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911602

RESUMO

NAD+ synthetase is an essential enzyme of de novo and recycling pathways of NAD+ biosynthesis in Mycobacterium tuberculosis but not in humans. This bifunctional enzyme couples the NAD+ synthetase and glutaminase activities through an ammonia tunnel but free ammonia is also a substrate. Here we show that the Homo sapiens NAD+ synthetase (hsNadE) lacks substrate specificity for glutamine over ammonia and displays a modest activation of the glutaminase domain compared to tbNadE. We report the crystal structures of hsNadE and NAD+ synthetase from M. tuberculosis (tbNadE) with synthetase intermediate analogues. Based on the observed exclusive arrangements of the domains and of the intra- or inter-subunit tunnels we propose a model for the inter-domain communication mechanism for the regulation of glutamine-dependent activity and NH3 transport. The structural and mechanistic comparison herein reported between hsNadE and tbNadE provides also a starting point for future efforts in the development of anti-TB drugs.


Assuntos
Amida Sintases/metabolismo , Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Mycobacterium tuberculosis/enzimologia , Amida Sintases/química , Amida Sintases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/química , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Domínio Catalítico , Glutaminase/química , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , NAD/metabolismo , Especificidade por Substrato
8.
Nat Struct Mol Biol ; 16(4): 421-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19270703

RESUMO

NAD(+) is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD(+) biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD(+) synthetase, which catalyzes the ATP-dependent formation of NAD(+) at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD(+) synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD(+) synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-A intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.


Assuntos
Amida Sintases/química , Domínio Catalítico , Mycobacterium tuberculosis/enzimologia , Amônia/metabolismo , Cristalografia por Raios X , Glutamina/metabolismo , Cinética , Modelos Moleculares , NAD/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa