RESUMO
Conventional x-ray sources for medical imaging utilize bremsstrahlung radiation. These sources generate large bandwidth (BW) x-ray spectra with large fractions of photons that impart a dose, but do not contribute to image production. X-ray sources based on laser-Compton scattering can have inherently small energy BWs and can be tuned to low dose-imparting energies, allowing them to take advantage of atomic K-edge contrast enhancement. This paper investigates the use of gadolinium-based K-edge subtraction imaging in the context of mammography using a laser-Compton source through simulations quantifying contrast and dose in such imaging systems as a function of laser-Compton source parameters. Our simulations indicate that a K-edge subtraction image generated with a 0.5% BW (FWHM) laser-Compton x-ray source can obtain an equal contrast to a bremsstrahlung image with only 3% of the dose.
Assuntos
Redução da Medicação , Gadolínio , Lasers , Mamografia , Imagens de Fantasmas , Raios XRESUMO
The development of compact quasimonoenergetic x-ray radiation sources based on laser Compton scattering (LCS) offers opportunities for novel approaches to medical imaging. However, careful experimental design is required to fully utilize the angle-correlated x-ray spectra produced by LCS sources. Direct simulations of LCS x-ray spectra are computationally expensive and difficult to employ in experimental optimization. In this manuscript, we present a computational method that fully characterizes angle-correlated LCS x-ray spectra at any end point energy within a range defined by three direct simulations. With this approach, subsequent LCS x-ray spectra can be generated with up to 200 times less computational overhead.
Assuntos
Lasers , Luz , Diagnóstico por Imagem , Raios XRESUMO
The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 µA of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x-rays via laser-Compton scattering for clinical imaging and does so from a machine of "clinical" footprint. At the same time, the production of 1000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.
RESUMO
We present a method to simulate ultrafast pump-probe time-resolved circular dichroism (TRCD) spectra based on time-dependent density functional theory trajectory surface hopping. The method is applied to simulate the TRCD spectrum along the photoinduced ring-opening of provitamin D. Simulations reveal that the initial decay of the signal is due to excited state relaxation, forming the rotationally flexible previtamin D. We further show that oscillations in the experimental TRCD spectrum arise from isomerizations between previtamin D rotamers with different chirality, which are associated with the helical conformation of the triene unit. We give a detailed description of the formation dynamics of different rotamers, playing a key role in the natural regulation vitamin D photosynthesis. Going beyond the sole extraction of decay rates, simulations greatly increase the amount of information that can be retrieved from ultrafast TRCD, making it a sensitive tool to unravel details in the sub-picosecond dynamics of photoinduced chirality changes.
RESUMO
We present a method to simulate ultrafast pump-probe time-resolved circular dichroism (TRCD) spectra based on time-dependent density functional theory trajectory surface hopping. The method is applied to simulate the TRCD spectrum along the photoinduced ring-opening of provitamin D. Simulations reveal that the initial decay of the signal is due to excited state relaxation, forming the rotationally flexible previtamin D. We further show that oscillations in the experimental TRCD spectrum arise from isomerizations between previtamin D rotamers with different chirality, which are associated with the helical conformation of the triene unit. We give a detailed description of the formation dynamics of different rotamers, playing a key role in the natural regulation of vitamin D photosynthesis. Going beyond the sole extraction of decay rates, simulations greatly increase the amount of information that can be retrieved from ultrafast TRCD, making it a sensitive tool to unravel details in the subpicosecond dynamics of photoinduced chirality changes.
RESUMO
OBJECTIVES: To compare two statistical models, namely logistic regression and artificial neural network (ANN), in prediction of vestibular schwannoma (VS) recurrence. METHODS: Seven hundred eighty-nine patients with VS diagnosis completed an online survey. Potential predictors for recurrence were derived from univariate analysis by reaching the cut off P value of .05. Those nine potential predictors were years since treatment, surgeon's specialty, resection amount, and having incomplete eye closure, dry eye, double vision, facial pain, seizure, and voice/swallowing problem as a complication following treatment. Multivariate binary logistic regression model was compared with a four-layer 9-5-10-1 feedforward backpropagation ANN for prediction of recurrence. RESULTS: The overall recurrence rate was 14.5%. Significant predictors of recurrence in the regression model were years since treatment and resection amount (both P < .001). The regression model did not show an acceptable performance (area under the curve [AUC] = 0.64; P = .27). The regression model's sensitivity and specificity were 44% and 69%, respectively and correctly classified 56% of cases. The ANN showed a superior performance compared to the regression model (AUC = 0.79; P = .001) with higher sensitivity (61%) and specificity (81%), and correctly classified 70% of cases. CONCLUSION: The constructed ANN model was superior to logistic regression in predicting patient-answered VS recurrence in an anonymous survey with higher sensitivity and specificity. Since artificial intelligence tools such as neural networks can have higher predictive abilities compared to logistic regression models, continuous investigation into their utility as complementary clinical tools in predicting certain surgical outcomes is warranted.