RESUMO
BACKGROUND: Lower respiratory tract infections are a leading cause of death in young children, but few studies have collected the specimens needed to define the role of specific causes. The Child Health and Mortality Prevention Surveillance (CHAMPS) platform aims to investigate causes of death in children aged <5 years in high-mortality rate settings, using postmortem minimally invasive tissue sampling and other advanced diagnostic techniques. We examined findings for deaths identified in CHAMPS sites in 7 countries in sub-Saharan Africa and south Asia to evaluate the role of respiratory syncytial virus (RSV). METHODS: We included deaths that occurred between December 2016 and December 2019. Panels determined causes of deaths by reviewing all available data including pathological results from minimally invasive tissue sampling, polymerase chain reaction screening for multiple infectious pathogens in lung tissue, nasopharyngeal swab, blood, and cerebrospinal fluid samples, clinical information from medical records, and verbal autopsies. RESULTS: We evaluated 1213 deaths, including 695 in neonates (aged <28 days), 283 in infants (28 days to <12 months), and 235 in children (12-59 months). RSV was detected in postmortem specimens in 67 of 1213 deaths (5.5%); in 24 deaths (2.0% of total), RSV was determined to be a cause of death, and it contributed to 5 other deaths. Younger infants (28 days to <6 months of age) accounted for half of all deaths attributed to RSV; 6.5% of all deaths in younger infants were attributed to RSV. RSV was the underlying and only cause in 4 deaths; the remainder (nâ =â 20) had a median of 2 (range, 1-5) other conditions in the causal chain. Birth defects (nâ =â 8) and infections with other pathogens (nâ =â 17) were common comorbid conditions. CONCLUSIONS: RSV is an important cause of child deaths, particularly in young infants. These findings add to the substantial body of literature calling for better treatment and prevention options for RSV in high-mortality rate settings.
Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Saúde da Criança , Mortalidade da Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções Respiratórias/epidemiologiaRESUMO
BACKGROUND: MALDI-TOF MS is an analytical method that has recently become integral in the identification of microorganisms in clinical laboratories. It relies on databases that majorly employ pattern recognition or fingerprinting. Biomarker based databases have also been developed and there is optimism that these may be superior to pattern recognition based databases. This study compared the performance of ribosomal biomarker based MALDI-TOF MS and conventional methods in the identification of selected bacteria and yeast. METHODS: The study was a cross sectional study identifying clinically relevant bacteria and yeast isolated from varied clinical specimens submitted to a clinical laboratory. The identification of bacteria using conventional Vitek 2™ automated system, serotyping and MALDI-TOF MS was performed as per standard operating procedures. Comparison of sensitivities were then carried out using Pearson Chi-Square test and p-value of <0.05 was considered statistically significant. Secondary outcomes analyzed included the major and minor error rates. RESULTS: Of the 383 isolates MALDI-TOF MS and conventional methods identified 97.6 and 95.7% (p = 0.231) to the genus level and 97.4 and 88.0% (p = 0.000) to the species level respectively. Biomarker based MALDI-TOF MS was significantly superior to Vitek 2™ in the identification of Gram negative bacteria and Gram positive bacteria to the species level. For the Gram positive bacteria, significant difference was observed in the identification of Coagulase negative Staphylococci (p = 0.000) and Enterococcus (p = 0.008). Significant difference was also observed between serotyping and MALDI-TOF MS (p = 0.005) and this was attributed to the lack of identification of Shigella species by MALDI-TOF MS. There was no significant difference observed in the identification of yeast however some species of Candida were unidentified by MALDI-TOF MS. CONCLUSION: Biomarker based MALDI-TOF MS had good performance in a clinical laboratory setting with high sensitivities in the identification of clinically relevant microorganisms.
Assuntos
Bactérias/isolamento & purificação , Biomarcadores/análise , Técnicas de Laboratório Clínico/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Leveduras/isolamento & purificação , Bactérias/classificação , Bactérias/patogenicidade , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Candidíase/diagnóstico , Candidíase/microbiologia , Distribuição de Qui-Quadrado , Técnicas de Laboratório Clínico/instrumentação , Estudos Transversais , Humanos , Sensibilidade e Especificidade , Sorotipagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Leveduras/classificação , Leveduras/patogenicidadeRESUMO
BACKGROUND: The Clinical Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines are the most popular breakpoint guidelines used in antimicrobial susceptibility testing worldwide. The EUCAST guidelines are freely available to users while CLSI is available for non-members as a package of three documents for US $500 annually. This is prohibitive for clinical microbiology laboratories in resource poor settings. We set out to compare antibiotic susceptibility determined by the two guidelines to determine whether adoption of EUCAST guidelines would significantly affect our susceptibility patterns. METHODS: We reviewed minimum inhibitory concentrations (MIC) of various antibiotics routinely reported for Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) isolates from an automated microbiology identification system (VITEK-2) at the Aga Khan University Hospital Nairobi's Pathology department. These MICs were then analyzed using both CLSI 2015 and EUCAST 2015 guidelines and classified as resistant, intermediate or susceptible. We compared the susceptibility and agreement between the CLSI and EUCAST categorizations. RESULTS: Susceptibility data from a total of 5165 E. coli, 1103 S. aureus and 532 P. aeruginosa isolates were included. The concordance rates of the two guidelines for E. coli, S. aureus and P. aeruginosa ranged from 78.2 to 100 %, 94.6 to 100 % and 89.1 to 95.5 % respectively. The kappa statistics for E. coli MICs revealed perfect agreement between CLSI and EUCAST for cefotaxime, ceftriaxone and trimethoprim-sulfamethoxazole, almost perfect agreement for ampicillin, ciprofloxacin, cefuroxime, gentamicin and ceftazidime, substantial agreement for meropenem, moderate agreement for cefepime and amoxicillin-clavulanate, fair agreement for nitrofurantoin and poor agreement for amikacin. For S. aureus the kappa statistics revealed perfect agreement for penicillin, trimethoprim-sulfamethoxazole, levofloxacin, oxacillin, linezolid and vancomycin, almost perfect agreement for clindamycin, erythromycin and tetracycline and moderate agreement for gentamicin. For P. aeruginosa the kappa analysis revealed moderate to almost perfect agreement for all the anti-pseudomonal antibiotics. CONCLUSION: The results show comparable antibiotic susceptibility patterns between CLSI and EUCAST breakpoints. Given that EUCAST guidelines are freely available, it makes it easier for laboratories in resource poor settings to have an updated and readily available reference for interpreting antibiotic susceptibilities.
Assuntos
Antibacterianos/farmacologia , Laboratórios Hospitalares/normas , Testes de Sensibilidade Microbiana/métodos , Estudos Transversais , Escherichia coli/efeitos dos fármacos , Hospitais de Ensino , Humanos , Quênia , Laboratórios Hospitalares/organização & administração , Testes de Sensibilidade Microbiana/normas , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
BACKGROUND: Staphylococcus aureus (S. aureus) has established itself over the years as a major cause of morbidity and mortality both within the community and in healthcare settings. Methicillin resistant S. aureus (MRSA) in particular has been a major cause of nosocomial infections resulting in significant increase in healthcare costs. In Africa, the MRSA prevalence has been shown to vary across different countries. In order to better understand the epidemiology of MRSA in a setting, it is important to define its population structure using molecular tools as different clones have been found to predominate in certain geographical locations. METHODS: We carried out PFGE, MLST, SCCmec and spa typing of selected S. aureus isolates from a private and public referral hospital in Nairobi, Kenya. RESULTS: A total of 93 S. aureus isolates were grouped into 19 PFGE clonal complexes (A-S) and 12 singletons. From these, 55 (32 MRSA and 23 MSSA) representative isolates from each PFGE clonal complex and all singletons were spa typed. There were 18 different MRSA spa types and 22 MSSA spa types. The predominant MRSA spa type was t037 comprising 40.6 % (13/32) of all MRSA. In contrast, the MSSA were quite heterogeneous, only 2 out of 23 MSSA shared the same spa type. Two new MRSA spa types (t13149 and t13150) and 3 new MSSA spa types (t13182, t13193 and t13194) were identified. The predominant clonal complex was CC 5 which included multi-locus sequence types 1, 8 and 241. CONCLUSION: In contrast to previous studies published from Kenya, there's marked genetic diversity amongst clinical MRSA isolates in Nairobi including the presence of well-known epidemic MRSA clones. Given that these clones are resident within our referral hospitals, adherence to strict infection control measures needs to be ensured to reduce morbidity and mortality associated with hospital acquired MRSA infections.
Assuntos
Infecção Hospitalar/epidemiologia , DNA Bacteriano/genética , Genótipo , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Antibacterianos/uso terapêutico , Células Clonais , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Estudos Transversais , Farmacorresistência Bacteriana Múltipla/genética , Hospitais Privados , Hospitais Públicos , Humanos , Quênia/epidemiologia , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Prevalência , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/transmissãoRESUMO
Multidrug-resistant bacteria pose a major challenge to the clinical management of infections in resource-poor settings. Although nontyphoidal Salmonella (NTS) bacteria cause predominantly enteric self-limiting illness in developed countries, NTS is responsible for a huge burden of life-threatening bloodstream infections in sub-Saharan Africa. Here, we characterized nine S. Typhimurium isolates from an outbreak involving patients who initially failed to respond to ceftriaxone treatment at a referral hospital in Kenya. These Salmonella enterica serotype Typhimurium isolates were resistant to ampicillin, chloramphenicol, cefuroxime, ceftriaxone, aztreonam, cefepime, sulfamethoxazole-trimethoprim, and cefpodoxime. Resistance to ß-lactams, including to ceftriaxone, was associated with carriage of a combination of blaCTX-M-15, blaOXA-1, and blaTEM-1 genes. The genes encoding resistance to heavy-metal ions were borne on the novel IncHI2 plasmid pKST313, which also carried a pair of class 1 integrons. All nine isolates formed a single clade within S. Typhimurium ST313, the major clone of an ongoing invasive NTS epidemic in the region. This emerging ceftriaxone-resistant clone may pose a major challenge in the management of invasive NTS in sub-Saharan Africa.
Assuntos
Antibacterianos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Ampicilina/farmacologia , Proteínas de Bactérias/genética , Ceftriaxona , Cefuroxima/farmacologia , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Quênia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella typhimurium/genética , SorogrupoRESUMO
BACKGROUND: Staphylococcus aureus (S.aureus) is a major cause of both healthcare and community acquired infections. In developing countries, manual phenotypic tests are the mainstay for the identification of staphylococci with the tube and slide coagulase tests being relied upon as confirmatory tests for S. aureus. The subjectivity associated with interpretation of these tests may result in misidentification of coagulase negative staphylococci as S.aureus. Given that antibiotic resistance is more prevalent in CONS, this may result in over estimation of methicillin resistant S.aureus (MRSA) prevalence. METHODS: A review of susceptibility data from all non-duplicate S.aureus isolates generated between March 2011 and May 2013 by the Vitek-2 (bioMérieux) automated system was performed by the authors. The data was generated routinely from processed clinical specimens submitted to the microbiology laboratories for culture and sensitivity at the Aga Khan University Hospital and Gertrude's children's hospital both situated in Nairobi. RESULTS: Antimicrobial susceptibility data from a total of 731 non-duplicate S.aureus isolates was reviewed. Majority (79.2%) of the isolates were from pus swabs. Only 24 isolates were both cefoxitin and oxacillin resistant while 3 were resistant to oxacillin but susceptible to cefoxitin giving an overall MRSA prevalence of 3.7% (27/731). None of the isolates were resistant to mupirocin, linezolid, tigecycline, teicoplanin or vancomycin. CONCLUSION: The prevalence of MRSA in this study is much lower than what has been reported in most African countries. The significant change in antibiotic susceptibility compared to what has previously been reported in our hospital is most likely a consequence of the transition to an automated platform rather than a trend towards lower resistance rates.
Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/epidemiologia , Estudos Transversais , Hospitais Privados , Humanos , Quênia/epidemiologia , Meticilina/farmacologia , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Prevalência , Infecções Estafilocócicas/microbiologiaRESUMO
We determined antibiotic susceptibility and employed Oxford Nanopore whole-genome sequencing to explore strain diversity, resistance, and virulence gene carriage among methicillin-resistant Staphylococcus aureus (MRSA) strains from different infection sites and timepoints in a tertiary Kenyan hospital. Ninety-six nonduplicate clinical isolates recovered between 2010 and 2023, identified and tested for antibiotic susceptibility on the VITEK ID/AST platform, were sequenced. Molecular typing, antibiotic resistance, and virulence determinant screening were performed using the relevant bioinformatics tools. The strains, alongside those from previous studies, were stratified into two periods covering 2010-2017 and 2018-2023 and comparisons were made. Mirroring phenotypic profiles, aac(6')-aph(2â³) [aminoglycosides]; gyrA (S84L) and grlA (S80Y) [fluoroquinolones]; dfrG [anti-folates]; and tet(K) [tetracycline] resistance determinants dominated the collection. While the proportion of ST239/241-t037-SCCmec III among MRSA reduced from 37.7% to 0% over the investigated period, ST4803-t1476-SCCmec IV and ST152-t355-SCCmec IV were pre-eminent. The prevalence of Panton-Valentine leucocidin (PVL) and arginine catabolic mobile element (ACME) genes was 38% (33/87) and 6.8% (6/87), respectively. We observed the displacement of HA-MRSA ST239/241-t037-SCCmec III with the emergence of ST152-t355-SCCmec IV and a greater clonal heterogeneity. The occurrence of PVL+/ACME+ CA-MRSA in recent years warrants further investigations into their role in the CA-MRSA virulence landscape, in a setting of high PVL prevalence.
RESUMO
Candida auris is a World Health Organization critical priority fungal pathogen. We conducted a systematic review to describe its epidemiology in Africa. PubMed and Google scholar databases were searched between January 2009 and September 2023 for clinical studies on C. auris cases and/or isolates from Africa. Reviews were excluded. We included 19 studies, involving at least 2529 cases from 6 African countries with the most, 2372 (93.8%), reported from South Africa. Whole-genome sequencing of 127 isolates identified 100 (78.7%) as clade III. Among 527 isolates, 481 (91.3%) were resistant to fluconazole, 108 (20.5%) to amphotericin B, and 9 (1.7%) to micafungin. Ninety of 211 (42.7%) patients with clinical outcomes died. C. auris is associated with high mortality and antifungal resistance, yet this critical pathogen remains underreported in Africa. Collaborative surveillance, fungal diagnostics, antifungals, and sustainable infection control practices are urgently needed for containment.
RESUMO
The growing resistance to amoxicillin (AMX)-one of the main antibiotics used in Helicobacter pylori eradication therapy-is an increasing health concern. Several mutations of penicillin-binding protein 1A (PBP1A) are suspected of causing AMX resistance; however, only a limited set of these mutations have been experimentally explored. This study aimed to investigate four PBP1A mutations (i.e., T558S, N562H, T593A, and G595S) carried by strain KIN76, a high-level AMX-resistant clinical H. pylori isolate with an AMX minimal inhibition concentration (MIC) of 2 µg/mL. We transformed a recipient strain 26695 with the DNA containing one to four mutation allele combinations of the pbp1 gene from strain KIN76. Transformants were subjected to genomic exploration and antimicrobial susceptibility testing. The resistance was transformable, and the presence of two to four PBP1A mutations (T558S and N562H, or T593A and G595S), rather than separate single mutations, was necessary to synergistically increase the AMX MIC up to 16-fold compared with the wild-type (WT) strain 26695. An AMX binding assay of PBP1A was performed using these strains, and binding was visualized by chasing Bocillin, a fluorescent penicillin analog. This revealed that all four-mutation allele-transformed strains exhibited decreased affinity to AMX on PBP1A than the WT. Protein structure modeling indicated that functional modifications occur as a result of these amino acid substitutions. This study highlights a new synergistic AMX resistance mechanism and establishes new markers of AMX resistance in H. pylori.IMPORTANCEThe development of resistance to antibiotics, including amoxicillin, is hampering the eradication of Helicobacter pylori infection. The identification of mechanisms driving this resistance is crucial for the development of new therapeutic strategies. We have demonstrated in vitro the synergistic role of novel mutations in the pbp1 gene of H. pylori that is suspected to drive amoxicillin resistance. Also deepening our understanding of amoxicillin resistance mechanisms, this study establishes new molecular markers of amoxicillin resistance that may be useful in molecular-based antibiotic susceptibility testing approaches for clinical practice or epidemiologic investigations.
Assuntos
Substituição de Aminoácidos , Amoxicilina , Antibacterianos , Farmacorresistência Bacteriana , Helicobacter pylori , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas , Helicobacter pylori/genética , Helicobacter pylori/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/genética , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Mutação , Humanos , Infecções por Helicobacter/microbiologia , Proteínas de Bactérias/genéticaRESUMO
Importance: The emergence of acute neurological symptoms in children necessitates immediate intervention. Although low- and middle-income countries (LMICs) bear the highest burden of neurological diseases, there is a scarcity of diagnostic and therapeutic resources. Therefore, current understanding of the etiology of neurological emergencies in LMICs relies mainly on clinical diagnoses and verbal autopsies. Objective: To characterize the association of premortem neurological symptoms and their management with postmortem-confirmed cause of death among children aged younger than 5 years in LMICs and to identify current gaps and improve strategies to enhance child survival. Design, Setting, and Participants: This cross-sectional study was conducted between December 3, 2016, and July 22, 2022, at the 7 participating sites in the Child Health and Mortality Prevention Surveillance (CHAMPS) network (Bangladesh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, and South Africa). Minimally invasive tissue sampling was performed at the CHAMPS sites with specimens from deceased children aged younger than 5 years. This study included deceased children who underwent a premortem neurological evaluation and had a postmortem-confirmed cause of death. Data analysis was performed between July 22, 2022, and January 15, 2023. Main Outcomes and Measures: Descriptive analysis was performed using neurological evaluations from premortem clinical records and from postmortem determination of cause of death (based on histopathology, microbiological testing, clinical records, and verbal autopsies). Results: Of the 2127 deaths of children codified during the study period, 1330 (62.5%) had neurological evaluations recorded and were included in this analysis. The 1330 children had a median age of 11 (IQR, 2-324) days; 745 (56.0%) were male and 727 (54.7%) presented with neurological symptoms during illness before death. The most common postmortem-confirmed neurological diagnoses related to death were hypoxic events (308 [23.2%]), meningoencephalitis (135 [10.2%]), and cerebral malaria (68 [5.1%]). There were 12 neonates with overlapping hypoxic events and meningoencephalitis, but there were no patients with overlapping meningoencephalitis and cerebral malaria. Neurological symptoms were similar among diagnoses, and no combination of symptoms was accurate in differentiating them without complementary tools. However, only 25 children (18.5%) with meningitis had a lumbar puncture performed before death. Nearly 90% of deaths (442 of 511 [86.5%]) with neurological diagnoses in the chain of events leading to death were considered preventable. Conclusions and Relevance: In this cross-sectional study of children aged younger than 5 years, neurological symptoms were frequent before death. However, clinical phenotypes were insufficient to differentiate the most common underlying neurological diagnoses. The low rate of lumbar punctures performed was especially worrying, suggesting a challenge in quality of care of children presenting with neurological symptoms. Improved diagnostic management of neurological emergencies is necessary to ultimately reduce mortality in this vulnerable population.
Assuntos
Causas de Morte , Países em Desenvolvimento , Humanos , Lactente , Pré-Escolar , Masculino , Estudos Transversais , Feminino , Países em Desenvolvimento/estatística & dados numéricos , Doenças do Sistema Nervoso/mortalidade , Quênia/epidemiologia , Recém-Nascido , África do Sul/epidemiologia , Bangladesh/epidemiologia , Etiópia/epidemiologia , Serra Leoa/epidemiologia , Mali/epidemiologia , Moçambique/epidemiologia , Autopsia/estatística & dados numéricosRESUMO
BACKGROUND: The Child Health and Mortality Prevention Surveillance (CHAMPS) Network programme undertakes post-mortem minimally invasive tissue sampling (MITS), together with collection of ante-mortem clinical information, to investigate causes of childhood deaths across multiple countries. We aimed to evaluate the overall contribution of pneumonia in the causal pathway to death and the causative pathogens of fatal pneumonia in children aged 1-59 months enrolled in the CHAMPS Network. METHODS: In this observational study we analysed deaths occurring between Dec 16, 2016, and Dec 31, 2022, in the CHAMPS Network across six countries in sub-Saharan Africa (Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, and South Africa) and one in South Asia (Bangladesh). A standardised approach of MITS was undertaken on decedents within 24-72 h of death. Diagnostic tests included blood culture, multi-organism targeted nucleic acid amplifications tests (NAATs) of blood and lung tissue, and histopathology examination of various organ tissue samples. An interdisciplinary expert panel at each site reviewed case data to attribute the cause of death and pathogenesis thereof on the basis of WHO-recommended reporting standards. FINDINGS: Pneumonia was attributed in the causal pathway of death in 455 (40·6%) of 1120 decedents, with a median age at death of 9 (IQR 4-19) months. Causative pathogens were identified in 377 (82·9%) of 455 pneumonia deaths, and multiple pathogens were implicated in 218 (57·8%) of 377 deaths. 306 (67·3%) of 455 deaths occurred in the community or within 72 h of hospital admission (presumed to be community-acquired pneumonia), with the leading bacterial pathogens being Streptococcus pneumoniae (108 [35·3%]), Klebsiella pneumoniae (78 [25·5%]), and non-typeable Haemophilus influenzae (37 [12·1%]). 149 (32·7%) deaths occurred 72 h or more after hospital admission (presumed to be hospital-acquired pneumonia), with the most common pathogens being K pneumoniae (64 [43·0%]), Acinetobacter baumannii (19 [12·8%]), S pneumoniae (15 [10·1%]), and Pseudomonas aeruginosa (15 [10·1%]). Overall, viruses were implicated in 145 (31·9%) of 455 pneumonia-related deaths, including 54 (11·9%) of 455 attributed to cytomegalovirus and 29 (6·4%) of 455 attributed to respiratory syncytial virus. INTERPRETATION: Pneumonia contributed to 40·6% of all childhood deaths in this analysis. The use of post-mortem MITS enabled biological ascertainment of the cause of death in the majority (82·9%) of childhood deaths attributed to pneumonia, with more than one pathogen being commonly implicated in the same case. The prominent role of K pneumoniae, non-typable H influenzae, and S pneumoniae highlight the need to review empirical management guidelines for management of very severe pneumonia in low-income and middle-income settings, and the need for research into new or improved vaccines against these pathogens. FUNDING: Bill & Melinda Gates Foundation.
Assuntos
Pneumonia , Criança , Humanos , Lactente , Streptococcus pneumoniae , Mortalidade da Criança , África do Sul/epidemiologia , Ásia MeridionalRESUMO
Background: Notable geographic and temporal variations in the prevalence and genotypes of Helicobacter pylori, in relation to gastric pathologies, have been observed; however, their significance and trends in African populations is scarcely described. The aim of this study, was to investigate the association of H. pylori and its respective CagA and vacuolating cytotoxin A (VacA) genotypes with gastric adenocarcinoma, and to describe the trends of H. pylori genotypes over an 8-year period (2012-2019). Materials and methods: A total of 286 samples of gastric cancer cases and benign controls (one-to-one matching), from three main cities in Kenya, between 2012 and 2019 were included. Histologic evaluation, and CagA and VacA genotyping using PCR, was performed. Distribution of H. pylori genotypes was presented in proportions. To determine association, a univariate analysis was conducted using a Wilcoxon rank sum test for continuous variables, and a Chi-squared test or Fisher's exact test for categorical data. Results: The VacA s1m1 genotype was associated with gastric adenocarcinoma, {odds ratio (OR) = 2.68 [confidence interval (CI) of 95%: 0.83-8.65]; p = 0.108}, whilst VacA s2m2 was associated with a reduced probability of gastric adenocarcinoma [OR = 0.23 (CI 95%: 0.07-0.78); p = 0.031]. No association between cytotoxin associated gene A (CagA) and gastric adenocarcinoma was observed. Conclusion: Over the study period, an increase in all genotypes of H. pylori was seen, and although no predominant genotype was noted, there was significant year-to-year variation, with VacA s1 and VacA s2 showing the greatest variation. VacA s1m1 and VacA s2m2 were associated with increased, and reduced risk of gastric cancer, respectively. Intestinal metaplasia and atrophic gastritis did not appear to be significant in this population.
RESUMO
Objectives. To describe RDS in neonatal deaths at the CHAMPS-Kenya site between 2017 and 2021. Methods. We included 165 neonatal deaths whose their Causes of death (COD) were determined by a panel of experts using data from post-mortem conducted through minimally invasive tissue specimen testing, clinical records, and verbal autopsy. Results. Twenty-six percent (43/165) of neonatal deaths were attributable to RDS. Most cases occurred in low birthweight and preterm neonates. From these cases, less than half of the hospitalizations were diagnosed with RDS before death, and essential diagnostic tests were not performed in most cases. Most cases received suboptimal levels of supplemental oxygen, and critical interventions like surfactant replacement therapy and mechanical ventilation were not adequately utilized when available. Conclusion. The study highlights the urgent need for improved diagnosis and management of RDS, emphasizing the importance of increasing clinical suspicion and enhancing training in its clinical management to reduce mortality rates.
RESUMO
Introduction: The human-restricted sexually transmitted Neisseria gonorrhoeae (NG) has been shown to modulate the immune response against it and consequently the cytokines produced. The levels of cytokines in NG infection in the African population have not been well described. We aimed to quantify the systemic and mucosal cytokines in NG infection. Methods: This was a comparative cross-sectional study. Levels of nine cytokines (IL-1ß, IL-2, IL-4, 1L-6, 1L-10, 1L-12p70, IL-17A, TNF-α and INF-γ) were measured from plasma and genital samples (urethral swabs in men and cervicovaginal lavage in women) from 61 Neisseria gonorrhoeae infected individuals seeking treatment for sexually transmitted infections (STIs) at Casino Health Centre in Nairobi, Kenya. A comparative group of 61 NG-uninfected individuals, seeking treatment at the same facility but with laboratory-confirmed negative Neisseria gonorrhoeae, Chlamydia trachomatis (CT), Mycoplasma genitalium (MG) and Trichomonas vaginalis(TV) was also included. The Mann-Whitney U test was used to compare the cytokine levels between NG-infected and uninfected individuals. Data was analyzed using STATA ver. 15.1. Results: Overall, systemic IL-6, TNF-α and IL-10 were elevated while genital IL-10 and TNF-α were lower in NG positive participants. On subgroup analysis by sex, the levels of genital IL-1ß and IL-6 and systemic IL-6 were elevated in NG-infected men. None of the genital cytokines were elevated in NG-infected women, while all systemic cytokines, except INF-γ, were elevated in NG-infected women. Conclusions: Neisseria gonorrhoeae induced the production of different cytokines in men and women, with men having a pro-inflammatory genital response. These differences should be taken into consideration during development of various interventions e.g. vaccine development.
RESUMO
Introduction: From the first case of SARS-Co-2 in Wuhan, China, to the virus being declared as a pandemic in March 2020, the world has witnessed morbidity and mortality on a global scale. Scientists have worked at a record pace to deliver a vaccine for the prevention of this deadly disease. Tocilizumab, an interleukin-6 (IL-6) blocker, received an emergency use authorization (EUA) by the Federal Drug Agency (FDA) in June 2021. Methods: This retrospective observational cohort study was conducted at the Aga Khan University Hospital, Nairobi, from March 8, 2020, to December 31, 2020. All patients with PCR confirmed COVID-19 pneumonia were included. Data were obtained from the medical records, and the admission registry was used to identify the patients, and both their electronic and paper-based files were retrieved from the medical records. Patient demographic data, medical history, baseline comorbidities, clinical characteristics, and outcome data were collected to study the infectious complications of Tocilizumab in patients affected by COVID-19 pneumonia. Results: A total of 913 patients who were diagnosed with COVID-19 were included. The overall superinfection infection rate among the COVID-19 patients was 6%. Superinfection in patients who received the Tocilizumab was 17.2% and in the non-Tocilizumab group was 4.8%. The superinfection rate among severe and critically ill patients was even higher at 41.8% and 69.9% (Tocilizumab group) and 2.1% and 11.8% (non-Tocilizumab group), respectively (p < 0.001). There was no difference in mortality observed between the groups (p = 0.846). Infection among HIV co-infection was very low at 2.3%. Conclusion: Contrary to some studies, a higher rate of infection was observed among the Tocilizumab group, and no difference in mortality was observed between Tocilizumab and the non-Tocilizumab group. Infection among patients with HIV remains low in this susceptible population.
RESUMO
Staphylococcus aureus is a clinically important bacteria with high antimicrobial resistance (AMR) challenge globally. The emergence of methicillin-resistant Staphylococcus aureus (MRSA) clones with unique sequence types have been identified in the community showing evidence that the epidemiology of MRSA globally is changing and requires continual surveillance. We utilized whole genome sequencing to characterize two community acquired-MRSA (CA-MRSA) strains isolated from wound swabs from community-onset infections in two health facilities in Kenya. The two strains belonged to multilocus sequence type (MLST) sequence type (ST) 7460, and ST 7635. The resistance genes detected showed that the novel STs are carriers of clinically relevant resistance genes. Linezolid and mupirocin resistance was observed, yet mupirocin is not commonly used in the country. Mutations within resistance genes were also detected and the pathogenicity toward the human host matched various pathogenic global S. aureus families, e.g., S. aureus subsp. aureus USA300. Multidrug efflux transporters, important in antimicrobial resistance including restriction enzymes type I and type IV were detected. Plasmids identified showed similarities with the plasmids in other clinically significant non-staphylococcal species, such as Pseudomonas aeruginosa, Escherichia coli, Morganella morganii, and Enterococcus faecium. Both STs belong to clonal complex 8 (CC8) which is the most successful MRSA clone in Kenya. Spa type t30 to which ST 7635 belongs has not been reported in the country. The results of this study further highlight the need for epidemiological studies to reveal circulating strains and antimicrobial resistance spread between hospitals and the community. The genomic research highlights resistance to anti-staphylococcal broad-spectrum antimicrobials not used frequently in the country, jeopardizing successful MRSA treatment since most health facilities do not perform genotypic resistance tests for routine patient management. Preliminary insights into unidentified STs of CA-MRSA in Kenya show the need for molecular epidemiological surveillance studies to further understand the diversity of S. aureus in Africa.
RESUMO
INTRODUCTION: Clostridioides difficile is primarily associated with hospital-acquired diarrhoea. The disease burden is aggravated in patients with comorbidities due to increased likelihood of polypharmacy, extended hospital stays and compromised immunity. The study aimed to investigate comorbidity predictors of healthcare facility-onset C. difficile infection (HO-CDI) in hospitalized patients. METHODOLOGY: We performed a cross sectional study of 333 patients who developed diarrhoea during hospitalization. The patients were tested for CDI. Data on demographics, admission information, medication exposure and comorbidities were collected. The comorbidities were also categorised according to Charlson Comorbidity Index (CCI) and Elixhauser Comorbidity Index (ECI). Comorbidity predictors of HO-CDI were identified using multiple logistic regression analysis. RESULTS: Overall, 230/333 (69%) patients had comorbidities, with the highest proportion being in patients aged over 60 years. Among the patients diagnosed with HO-CDI, 63/71(88.7%) reported comorbidities. Pairwise comparison between HO-CDI patients and comparison group revealed significant differences in hypertension, anemia, tuberculosis, diabetes, chronic kidney disease and chronic obstructive pulmonary disease. In the multiple logistic regression model significant predictors were chronic obstructive pulmonary disease (odds ratio [OR], 9.51; 95% confidence interval [CI], 1.8-50.1), diabetes (OR, 3.56; 95% CI, 1.11-11.38), chronic kidney disease (OR, 3.88; 95% CI, 1.57-9.62), anemia (OR, 3.67; 95% CI, 1.61-8.34) and hypertension (OR, 2.47; 95% CI, 1.-6.07). Among the comorbidity scores, CCI score of 2 (OR 6.67; 95% CI, 2.07-21.48), and ECI scores of 1 (OR, 4.07; 95% CI, 1.72-9.65), 2 (OR 2.86; 95% CI, 1.03-7.89), and ≥ 3 (OR, 4.87; 95% CI, 1.40-16.92) were significantly associated with higher odds of developing HO-CDI. CONCLUSION: Chronic obstructive pulmonary disease, chronic kidney disease, anemia, diabetes, and hypertension were associated with an increased risk of developing HO-CDI. Besides, ECI proved to be a better predictor for HO-CDI. Therefore, it is imperative that hospitals should capitalize on targeted preventive approaches in patients with these underlying conditions to reduce the risk of developing HO-CDI and limit potential exposure to other patients.
RESUMO
Kenya is a country with a high tuberculosis (TB) burden. However, knowledge on the genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains and their transmission dynamics is sparsely available. Hence, we used whole-genome sequencing (WGS) to depict the genetic diversity, molecular markers of drug resistance, and possible transmission clusters among MTBC strains in urban and slum settings of Nairobi. We analyzed 385 clinical MTBC isolates collected between 2010 and 2015 in combination with patients' demographics. We showed that the MTBC population mainly comprises strains of four lineages (L1-L4). The two dominating lineages were L4 with 55.8% (n = 215) and L3 with 25.7% (n = 99) of all strains, respectively. Genome-based cluster analysis showed that 30.4% (117/385) of the strains were clustered using a ≤5 single-nucleotide polymorphism (SNP) threshold as a surrogate marker for direct patient-to-patient MTBC transmission. Moreover, 5.2% (20/385) of the strains were multidrug-resistant (MDR), and 50.0% (n = 10) were part of a genome-based cluster (i.e., direct MDR MTBC transmission). Notably, 30.0% (6/20) of the MDR strains were resistant to all first-line drugs and are part of one molecular cluster. Moreover, TB patients in urban living setting had 3.8 times the odds of being infected with a drug-resistant strain as compared to patients from slums (p-value = 0.002). Our results show that L4 strains are the main causative agent of TB in Nairobi and MDR strain transmission is an emerging concern in urban settings. This emphasizes the need for more focused infection control measures and contact tracing of patients with MDR TB to break the transmission chains.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Quênia/epidemiologia , Epidemiologia Molecular , Mycobacterium tuberculosis/genética , Áreas de Pobreza , Tuberculose/epidemiologia , Tuberculose/genéticaRESUMO
Introduction: Staphylococci other than Staphylococcus aureus (SOSA) in animals are becoming more pathogenic and antibiotic resistant and can potentially disseminate to humans. However, there is little synthesized information regarding SOSA from animals in Africa. This systematic review provides a comprehensive overview of the epidemiology and antimicrobial resistance of SOSA in companion animals (pets) and livestock in Africa. Method: This systematic review (PROSPERO-CRD42021252303) was conducted according to the PRISMA guidelines, and 75 eligible studies from 13 countries were identified until August 2022. Three electronic databases (Pubmed, Scopus and Web of Science) were employed. Results: The frequently isolated SOSA were S. epidermidis, S. intermedius, S. pseudintermedius, S. xylosus, S. chromogenes, S. hyicus, M. sciuri, S. hominis, and S. haemolyticus. Thirty (40%) studies performed antibiotic susceptibility testing (AST). Penicillin (58%) and tetracycline (28%) resistance were most common across all SOSA with high rates of resistance to aminoglycosides, fluoroquinolones, and macrolides in some species. Resistance to last-resort antibiotics such as linezolid and fusidic acid were also reported. Limited data on strain typing and molecular resistance mechanisms precluded analysis of the clonal diversity of SOSA on the continent. Conclusion: The findings of this review indicate that research on livestock-associated SOSA in Africa is lacking in some regions such as Central and Western Africa, furthermore, research on companion animals and more advanced methods for identification and strain typing of SOSA need to be encouraged. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42021252303.
RESUMO
Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms.