Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neurobiol Dis ; 176: 105945, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481436

RESUMO

Degeneration of neurons and circuits across the striatum shows stereotyped time-course and spatial topography patterns that are distinct for Huntington's disease, Parkinson's disease, or the Tauopathies. These patterns of neurodegeneration in humans have not yet been systematically related to developmental, connectional, cellular, and chemical factors studied in human and non-human primates, that may underlie potential differences in selective vulnerability across striatal sectors. Relating primate anatomy to human pathology could provide new venues for identifying molecular, cellular, and connectional factors linked to the degeneration of striatal neurons and circuits. This review describes and summarizes several developmental, cellular, structural, and connectional features of the primate striatum in relation to patterns of neurodegeneration in the striatum of humans and of non-human primate models. We review (1) the types of neurons in the primate striatum, (2) the cyto-, myelo-, and chemoarchitecture of the primate striatum, (3) the developmental origin of the striatum in light of modern patterning studies, (4) the organization of corticostriatal projections in relation to cortical types, and (5) the topography and time-course of neuron loss, glial reaction, and protein aggregation induced by neurodegenerative diseases in humans and in non-human primate models across striatal sectors and their corresponding cortical areas. We summarize current knowledge about key aspects of primate striatal anatomy and human pathology and indicate knowledge gaps that should be addressed in future studies. We aim to identify factors for selective vulnerability to neurodegeneration of striatal neurons and circuits and obtain hints that could help elucidate striatal pathology in humans.


Assuntos
Doença de Huntington , Neostriado , Animais , Humanos , Neostriado/patologia , Corpo Estriado/patologia , Primatas/fisiologia , Neurônios/metabolismo , Doença de Huntington/metabolismo , Vias Neurais/patologia
2.
J Am Chem Soc ; 144(9): 4026-4038, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212522

RESUMO

Smart surfaces that can change their wettability on demand are interesting for applications such as self-cleaning surfaces or lab-on-a-chip devices. We have synthesized arylazopyrazole (AAP) phosphonic acids as a new class of photoswitchable molecules for functionalization of aluminum oxide surfaces. AAP monolayers were deposited on α-Al2O3(0001) and showed reversible E/Z photoswitching that can trigger contact angle changes of up to ∼10°. We monitored these changes on the macroscopic level by recording the contact angle while the monolayer was switched in situ. On the molecular level, time-dependent vibrational sum-frequency generation (SFG) spectroscopy provided information on the kinetic changes within the AAP monolayer and the characteristic times for E/Z switching. In addition, vibrational SFG at different relative humidity indicates that the thermal stability of the Z configuration is largely influenced by the presence of water which can stabilize the Z state and hinder E → Z switching of the AAP monolayer when it is wetted with H2O. Having established the switching times on the molecular scale, we additionally measured the dynamic contact angle and show that the time scales of the substrate and droplet dynamics can be extracted individually. For that, we report on a relaxation model that is solved analytically and is verified via a comparison with simulations of a Lennard-Jones system and with experimental data. The slower E to Z switching in the presence of the droplet as compared to the vapor phase is rationalized in terms of specific interactions of water with the exposed AAP moieties.


Assuntos
Água , Cinética , Análise Espectral , Propriedades de Superfície , Água/química , Molhabilidade
3.
Neurobiol Dis ; 167: 105669, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219857

RESUMO

Dopaminergic denervation in patients with Parkinson's disease is associated with changes in brain metabolism. Cerebral in-vivo mapping of glucose metabolism has been studied in severe stable parkinsonian monkeys, but data on brain metabolic changes in early stages of dopaminergic depletion of this model is lacking. Here, we report cerebral metabolic changes associated with progressive nigrostriatal lesion in the pre-symptomatic and symptomatic stages of the progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson's Disease. Monkeys (Macaca fascicularis) received MPTP injections biweekly to induce progressive grades of dopamine depletion. Monkeys were sorted according to motor scale assessments in control, asymptomatic, recovered, mild, and severe parkinsonian groups. Dopaminergic depletion in the striatum and cerebral metabolic patterns across groups were studied in vivo by positron emission tomography (PET) using monoaminergic ([11C]-dihydrotetrabenazine; 11C-DTBZ) and metabolic (2-[18F]-fluoro-2-deoxy-d-glucose; 18F-FDG) radiotracers. 11C-DTBZ-PET analysis showed progressive decrease of binding potential values in the striatum of monkeys throughout MPTP administration and the development of parkinsonian signs. 18F-FDG analysis in asymptomatic and recovered animals showed significant hypometabolism in temporal and parietal areas of the cerebral cortex in association with moderate dopaminergic nigrostriatal depletion. Cortical hypometabolism extended to involve a larger area in mild parkinsonian monkeys, which also exhibited hypermetabolism in the globus pallidum pars interna and cerebellum. In severe parkinsonian monkeys, cortical hypometabolism extended further to lateral-frontal cortices and hypermetabolism also ensued in the thalamus and cerebellum. Unbiased histological quantification of neurons in Brodmann's area 7 in the parietal cortex did not reveal neuron loss in parkinsonian monkeys versus controls. Early dopaminergic nigrostriatal depletion is associated with cortical, mainly temporo-parietal hypometabolism unrelated to neuron loss. These findings, together with recent evidence from Parkinson's Disease patients, suggest that early cortical hypometabolism may be associated and driven by subcortical changes that need to be evaluated appropriately. Altogether, these findings could be relevant when potential disease modifying therapies become available.


Assuntos
Transtornos Parkinsonianos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Transtornos Parkinsonianos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Primatas/metabolismo
4.
Neuropathol Appl Neurobiol ; 48(5): e12812, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35274336

RESUMO

AIMS: The striatum is mainly composed of projection neurons. It also contains interneurons, which modulate and control striatal output. The aim of the present study was to assess the percentages of projection neurons and interneuron populations in the striatum of control monkeys and of parkinsonian monkeys. METHODS: Unbiased stereology was used to estimate the volume density of every neuron population in the caudate, putamen and ventral striatum of control monkeys and of monkeys treated with MPTP, which results in striatal dopamine depletion. The various neuron population phenotypes were identified by immunohistochemistry. All analyses were performed within the same subjects using similar processing and analysis parameters, thus allowing for reliable data comparisons. RESULTS: In control monkeys, the projection neurons, which express the dopamine-and-cAMP-regulated-phosphoprotein, 32-KDa (DARPP-32), were the most abundant: ~86% of the total neurons counted. The interneurons accounted for the remaining 14%. Among the interneurons, those expressing calretinin were the most abundant (Cr+: ~57%; ~8% of the total striatal neurons counted), followed those expressing Parvalbumin (Pv+: ~18%; 2.6%), dinucleotide phosphate-diaphorase (NADPH+: ~13%; 1.8%), choline acetyltransferase (ChAT+: ~11%; 1.5%) and tyrosine hydroxylase (TH+: ~0.5%; 0.1%). No significant changes in volume densities occurred in any population following dopamine depletion, except for the TH+ interneurons, which increased in parkinsonian non-symptomatic monkeys and even more in symptomatic monkeys. CONCLUSIONS: These data are relevant for translational studies targeting specific neuron populations of the striatum. The fact that dopaminergic denervation does not cause neuron loss in any population has potential pathophysiological implications.


Assuntos
Corpo Estriado , Dopamina , Interneurônios , Neurônios , Transtornos Parkinsonianos , Animais , Corpo Estriado/citologia , Corpo Estriado/patologia , Haplorrinos , Interneurônios/citologia , Neurônios/citologia , Transtornos Parkinsonianos/fisiopatologia
5.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364333

RESUMO

The surface properties of saponin and saponin-chitosan mixtures were analysed as a function of their bulk mixing ratio using vibrational sum-frequency generation (SFG), surface tensiometry and dilational rheology measurements. Our experiments show that saponin-chitosan mixtures present some remarkable properties, such as a strong amphiphilicity of the saponin and high dilational viscoelasticity. We believe this points to the presence of chitosan in the adsorption layer, despite its complete lack of surface activity. We explain this phenomenon by electrostatic interactions between the saponin as an anionic surfactant and chitosan as a polycation, leading to surface-active saponin-chitosan complexes and aggregates. Analysing the SFG intensity of the O-H stretching bands from interfacial water molecules, we found that in the case of pH 3.4 for a mixture consisting of 0.1 g/L saponin and 0.001 g/L chitosan, the adsorption layer was electrically neutral. This conclusion from SFG spectra is corroborated by results from surface tensiometry showing a significant reduction in surface tension and effects on the dilational surface elasticity strictly at saponin/chitosan ratios, where SFG spectra indicate zero net charge at the air-water interface.


Assuntos
Quitosana , Saponinas , Saponinas/química , Tensão Superficial , Propriedades de Superfície , Tensoativos/química , Adsorção , Água/química
6.
J Chem Phys ; 150(17): 174702, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067873

RESUMO

Pyridine layers on Cu(110) possess a strong electric field due to the large dipole of adsorbed pyridine. This electric field is visible as an enhanced sum frequency response from both the copper surface electrons and the aromatic C-H stretch of pyridine via a third order susceptibility. In response to a visible pump pulse, both surface electron and C-H stretch sum frequency signals are reduced on a subpicosecond time scale. In addition, the relative phase between the two signals changes over a few hundred femtoseconds, which indicates a change in the electronic structure of the adsorbate. We explain the transients as a consequence of the previously observed pyridine dipole field reversal when the pump pulse excites electrons into the pyridine π* orbital. The pyridine anions in the pyridine layer cause a large-scale structural change which alters the pyridine-copper bond, reflected in the altered sum frequency response.

7.
J Neural Transm (Vienna) ; 125(3): 325-335, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28357564

RESUMO

Research with animal models has led to critical health advances that have saved or improved the lives of millions of human beings. Specifically, nonhuman primate's genetic and anatomo-physiological similarities to humans are especially important for understanding processes like Parkinson's disease, which only occur in humans. Unambiguously, the unique contribution made by nonhuman primate research to our understanding of Parkinson's disease is widely recognized. For example, monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) parkinsonisms are responsive to dopamine replacement therapies, mimicking what is seen in PD patients. Moreover, groundbreaking neuroanatomical and electrophysiological studies using this monkey model in the 1980s and 1990s enabled researchers to identify the neuronal circuits responsible for the cardinal motor features of PD. This led to the development of subthalamic surgical ablation and deep brain stimulation, the current therapeutic gold standard for neurosurgical treatment. More recently, the mechanisms of α-synuclein spreading testing the prion hypothesis for PD have yielded exciting results. In this review, we discuss and highlight how the findings from nonhuman primate research contribute to our understanding of idiopathic Parkinson's disease.


Assuntos
Encéfalo/fisiopatologia , Doença de Parkinson Secundária/fisiopatologia , Doença de Parkinson/fisiopatologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia
8.
Phys Chem Chem Phys ; 19(16): 10491-10501, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28383582

RESUMO

We used vibrational sum-frequency generation spectroscopy (SFG) to investigate low-overpotential CO2 reduction on a polycrystalline Ag electrode using room temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium tetrafluorborate (EMIM-BF4) electrolyte mixtures with 0.3 mol%, 45 mol% and 77 mol% water. Adding water dramatically increases CO2 reduction efficiency up to 87.5 mol%. We found added water reduces the (negative) threshold potential for CO2 reduction from -1.33 V to -0.9 V. Added water also moved the potentials of the nonresonant (NR) SFG minima and caused the CO Stark shift to increase in concert with the reduction threshold. In previous work (N. García Rey and D. D. Dlott, J. Phys. Chem. C, 2015, 119, 20892-20899), with nearly-dry RTIL electrolyte (0.3 mol% water), we concluded a potential-driven structural transition of RTIL in the double layer controlled CO2 reduction. At lower water concentrations, where CO2 reduction was less efficient, CO product appeared primarily on Ag atop sites. At higher water concentrations where CO2 reduction efficiency was greater, adsorbed CO was observed on multiply-bonded sites, which are likely more efficient catalytic sites.

9.
Appetite ; 116: 139-146, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428151

RESUMO

Research on the relative influence of package features on children's perception of food products is still necessary to aid policy design and development. The aim of the present work was to evaluate the relative influence of two front-of-pack (FOP) nutrition labelling schemes, the traffic light system and Chilean warning system, and label design on children's choice of two popular snack foods in Uruguay, wafer cookies and orange juice. A total of 442 children in grades 4 to 6 from 12 primary schools in Montevideo (Uruguay) participated in the study. They were asked to complete a choice-conjoint task with wafer cookies and orange juice labels, varying in label design and the inclusion of FOP nutrition information. Half of the children completed the task with labels featuring the traffic-light system (n = 217) and the other half with labels featuring the Chilean warning system (n = 225). Children's choices of wafer cookies and juice labels was significantly influenced by both label design and FOP nutritional labels. The relative impact of FOP nutritional labelling on children's choices was higher for the warning system compared to the traffic-light system. Results from the present work stress the need to regulate the design of packages and the inclusion of nutrient claims, and provide preliminary evidence of the potential of warnings to discourage children's choice of unhealthful products.


Assuntos
Comportamento Infantil , Comportamento de Escolha , Dieta Saudável , Embalagem de Alimentos , Preferências Alimentares , Qualidade dos Alimentos , Cooperação do Paciente , Adolescente , Comportamento do Adolescente , Criança , Comportamento Infantil/etnologia , Citrus sinensis/química , Dieta Saudável/etnologia , Fast Foods/efeitos adversos , Fast Foods/análise , Feminino , Preferências Alimentares/etnologia , Sucos de Frutas e Vegetais/efeitos adversos , Sucos de Frutas e Vegetais/análise , Conhecimentos, Atitudes e Prática em Saúde/etnologia , Humanos , Masculino , Valor Nutritivo , Cooperação do Paciente/etnologia , Lanches/etnologia , Uruguai
10.
NPJ Parkinsons Dis ; 10(1): 118, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886348

RESUMO

Dopaminergic neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease (PD), while those in the dorsal tier and ventral tegmental area are relatively spared. The factors determining why these neurons are more vulnerable than others are still unrevealed. Neuroinflammation and immune cell infiltration have been demonstrated to be a key feature of neurodegeneration in PD. However, the link between selective dopaminergic neuron vulnerability, glial and immune cell response, and vascularization and their interactions has not been deciphered. We aimed to investigate the contribution of glial cell activation and immune cell infiltration in the selective vulnerability of ventral dopaminergic neurons within the midbrain in a non-human primate model of PD. Structural characteristics of the vasculature within specific regions of the midbrain were also evaluated. Parkinsonian monkeys exhibited significant microglial and astroglial activation in the whole midbrain, but no major sub-regional differences were observed. Remarkably, the ventral substantia nigra was found to be typically more vascularized compared to other regions. This feature might play some role in making this region more susceptible to immune cell infiltration under pathological conditions, as greater infiltration of both T- and B- lymphocytes was observed in parkinsonian monkeys. Higher vascular density within the ventral region of the SNc may be a relevant factor for differential vulnerability of dopaminergic neurons in the midbrain. The increased infiltration of T- and B- cells in this region, alongside other molecules or toxins, may also contribute to the susceptibility of dopaminergic neurons in PD.

11.
NPJ Parkinsons Dis ; 10(1): 165, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223183

RESUMO

The differential vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc) is a critical and unresolved question in Parkinson´s disease. Studies in mice show diverse susceptibility of subpopulations of nigral dopaminergic neurons to various toxic agents. In the primate midbrain, the molecular phenotypes of dopaminergic neurons and their differential vulnerability are poorly characterized. We performed a detailed histological study to determine the anatomical distribution of different molecular phenotypes within identified midbrain neurons and their selective vulnerability in control and MPTP-treated monkeys. In the ventral tier of the SNc (nigrosome), neurons rich in Aldh1a1 and Girk2 are intermingled, whereas calbindin is the marker that best identifies the most resilient neurons located in the dorsal tier and ventral tegmental area, recapitulating the well-defined dorsoventral axis of susceptibility to degeneration of dopaminergic neurons. In particular, a loss of Aldh1a1+ neurons in the ventral SNc was observed in parallel to the progressive development of parkinsonism. Aldh1a1+ neurons were the main population of vulnerable dopaminergic nigrostriatal-projecting neurons, while Aldh1a1- neurons giving rise to nigropallidal projections remained relatively preserved. Moreover, bundles of entwined Aldh1a1+ dendrites with long trajectories extending towards the substantia nigra pars reticulata emerged from clusters of Aldh1a1+ neurons and colocalized with dense cannabinoid receptor 1 afferent fibers likely representing part of the striatonigral projection that is affected in human disorders, including Parkinson´s disease. In conclusion, vulnerable nigrostriatal-projecting neurons can be identified by using Aldh1a1 and Girk2. Further studies are needed to define the afferent/efferent projection patterns of these most vulnerable neurons.

12.
Sci Adv ; 9(16): eadf4888, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075119

RESUMO

Intracerebral vector delivery in nonhuman primates has been a major challenge. We report successful blood-brain barrier opening and focal delivery of adeno-associated virus serotype 9 vectors into brain regions involved in Parkinson's disease using low-intensity focus ultrasound in adult macaque monkeys. Openings were well tolerated with generally no associated abnormal magnetic resonance imaging signals. Neuronal green fluorescent protein expression was observed specifically in regions with confirmed blood-brain barrier opening. Similar blood-brain barrier openings were safely demonstrated in three patients with Parkinson's disease. In these patients and in one monkey, blood-brain barrier opening was followed by 18F-Choline uptake in the putamen and midbrain regions based on positron emission tomography. This indicates focal and cellular binding of molecules that otherwise would not enter the brain parenchyma. The less-invasive nature of this methodology could facilitate focal viral vector delivery for gene therapy and might allow early and repeated interventions to treat neurodegenerative disorders.


Assuntos
Barreira Hematoencefálica , Doença de Parkinson , Animais , Barreira Hematoencefálica/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Doença de Parkinson/genética , Encéfalo/metabolismo , Macaca , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética
14.
J Colloid Interface Sci ; 607(Pt 2): 1754-1761, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34598032

RESUMO

Saponins like ß-escin exhibit an unusually high surface activity paired with a remarkable surface rheology which makes them as biosurfactants highly interesting for applications in soft matter colloids and at interfaces. We have applied vibrational sum-frequency generation (SFG) to study ß-escin adsorption layers at the air-water interface as a function of electrolyte pH and compare the results from SFG spectroscopy to complementary experiments that have addressed the surface tension and the surface dilational rheology. SFG spectra of ß-escin modified air-water interfaces demonstrate that the SFG intensity of OH stretching vibrations from interfacial water molecules is a function of pH and dramatically increases when the pH is increased from acidic to basic conditions and reaches a plateau at a solution pH of > 6. These changes are attributable to the interfacial charging state and to the deprotonation of the carboxylic acid group of ß-escin. Thus, the change in OH intensity provides qualitative information on the degree of protonation of this group at the air-water interface. At pH < 4 the air-water interface is dominated by the charge neutral form of ß-escin, while at pH > 6 its carboxylic acid group is fully deprotonated and, consequently, the interface is highly charged. These observations are corroborated by the change in equilibrium surface tension which is qualitatively similar to the change in OH intensity as seen in the SFG spectra. Further, once the surface layer is charge neutral, the surface elasticity drastically increases. This can be attributed to a change in prevailing intermolecular interactions that change from dominating repulsive electrostatic interactions at high pH, to dominating attractive interactions, such as hydrophobic and dispersive interactions, as well as, hydrogen bonding at low pH values. In addition to the clear changes in OH intensity from interfacial H2O, the SFG spectra exhibit drastic changes in the CH bands from interfacial ß-escin which we relate to differences in the net molecular orientation. This orientation change is driven by tighter packing of ß-escin adsorption layers when the ß-escin moiety is in its charge neutral form (pH < 4).


Assuntos
Escina , Água , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tensão Superficial
18.
J Chem Phys ; 135(22): 224708, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22168720

RESUMO

We use reflection-absorption infrared spectroscopy (RAIRS) to study the photochemistry of NO on Cu(110) in the UV-visible range. We observe that the only photoactive species of NO on Cu(110) is the NO dimer, which is asymmetrically bound to the surface. RAIRS shows that photoinduced dissociation proceeds via breaking of the weak N-N bond of the dimer, photodesorbing one NO(g) to the gas phase and leaving one NO(ads) adsorbed on the surface in a metastable atop position. We model the measured wavelength-dependent cross sections assuming both electron- and hole-induced processes and find that the photochemistry can be described by either electron attachment to a level 0.3 eV above the Fermi energy E(F) or hole attachment to a level 2.2 eV below E(F). While there is no experimental or theoretical evidence for an electron attachment level so close to E(F), an occupied NO-related molecular orbital is known to exist at E(F) - 2.52 eV on the Cu(111) surface [I. Kinoshita, A. Misu, and T. Munakata, J. Chem. Phys. 102, 2970 (1995)]. We, therefore, propose that photoinduced dissociation of NO dimers on Cu(110) in the visible wavelength region proceeds by the creation of hot holes at the top of the copper d-band.

19.
Front Aging Neurosci ; 13: 698979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744683

RESUMO

Proteinaceous inclusions, called Lewy bodies (LBs), are used as a pathological hallmark for Parkinson's disease (PD). Recent studies suggested a prion-like spreading mechanism for α-synucleinopathy where early neuropathological deposits occur, among others, in the olfactory bulb (OB) and amygdala. LBs contain insoluble α-synuclein and many other ubiquitinated proteins, suggesting a role of protein degradation system failure in PD pathogenesis. Therefore, we wanted to study the effects of a proteasomal inhibitor, lactacystin, on the aggregability and transmissibility of α-synuclein in the OB and amygdala. We performed injections of lactacystin in the OB and amygdala of wild-type mice. Motor behavior, markers of neuroinflammation, α-synuclein, and dopaminergic integrity were assessed by immunohistochemistry. Overall, there were no differences in the number of neurons and α-synuclein expression in these regions following injection of lactacystin into either the OB or amygdala. Microglial and astroglial labeling appeared to be correlated with surgery-induced inflammation or local effects of lactacystin. Consistent with the behavior and pathological findings, there was no loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. Our data showed that long-term lactacystin injections in extra nigrostriatal regions may not mimic spreading aspects of PD and reinforce the special vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc).

20.
Sci Rep ; 11(1): 3318, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558635

RESUMO

Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/genética , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/virologia , Camelídeos Americanos/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Imunização , Masculino , Testes de Neutralização , Biblioteca de Peptídeos , Ligação Proteica/genética , SARS-CoV-2/química , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa