Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes Brain Behav ; 20(7): e12730, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33786989

RESUMO

High and Low Activity strains of mice (displaying low and high anxiety-like behavior, respectively) with 7.8-20 fold differences in open-field activity were selected and subsequently inbred to use as a genetic model for studying anxiety-like behavior in mice (DeFries et al., 1978, Behavior Genetics, 8:3-13). These strains exhibited differences in other anxiety-related behaviors as assessed using the light-dark box, elevated plus-maze, mirror chamber, and elevated square-maze tests (Henderson et al., 2004, Behavior Genetics, 34: 267-293). The purpose of these experiments was three-fold. First, we repeated a 6-day behavioral battery using updated equipment and software to confirm the extreme differences in anxiety-like behaviors. Second, we tested novel object exploration, a measure of anxiety-like behavior that does not rely heavily on locomotion. Third, we conducted a home cage wheel running experiment to determine whether these strains differ in locomotor activity in a familiar, home cage environment. Our behavioral test battery confirmed extreme differences in multiple measures of anxiety-like behaviors. Furthermore, the novel object test demonstrated that the High Activity mice exhibited decreased anxiety-like behaviors (increased nose pokes) compared to Low Activity mice. Finally, male Low Activity mice ran nearly twice as far each day on running wheels compared to High Activity mice, while female High and Low Activity mice did not differ in wheel running. These results support the idea that the behavioral differences between High and Low Activity mice are likely to be due to anxiety-related factors and not simply generalized differences in locomotor activity.


Assuntos
Ansiedade/genética , Comportamento Animal/fisiologia , Locomoção/fisiologia , Atividade Motora/genética , Animais , Transtornos de Ansiedade/genética , Comportamento Exploratório/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos
2.
Genes Brain Behav ; 19(3): e12632, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31912976

RESUMO

Alcohol use disorders (AUDs) lead to early death and many devastating consequences for individuals, families and society. Currently, few effective treatments are available, but emerging research suggests exercise might be beneficial in some individuals. To develop the most effective exercise treatment program, more research on intensity, type, timing, stage of addiction, drug involved, sex of subject and subject population is needed. This review highlights the complexity of the interaction between alcohol behaviors and exercise, with a focus on the role of sex and genetics. Moreover, we describe a variety of rodent models used to investigate the neuronal physiology changes that underlie alcohol consumption and exercise. Specifically, current data indicate that moderate exercise may ameliorate neuronal damage caused by alcohol consumption. Additionally, we describe studies of rodent models in the context of hedonic substitution to draw broad conclusions about shared underlying neurobiological mechanisms. Until recently, most studies in rodents were performed only in males, and few studies have utilized different genetic strains of mice or rats. Comparing similar behavioral paradigms across sex and strain, it has become clear that major sex and genetic differences exist for each behavioral context alone (alcohol consumption and exercise) and combined. Therefore, future research in this area should be developed with careful study design and attention to address both of these factors.


Assuntos
Alcoolismo/genética , Exercício Físico , Neurônios/fisiologia , Alcoolismo/fisiopatologia , Animais , Feminino , Genótipo , Humanos , Masculino , Neurônios/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa