Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Part Fibre Toxicol ; 16(1): 36, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590690

RESUMO

BACKGROUND: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). RESULTS: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 µg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 µg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 µg/mL MWCNT-HT & ND. CONCLUSIONS: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.


Assuntos
Dano ao DNA , Células Epiteliais/efeitos dos fármacos , Temperatura Alta , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Nitrogênio/química , Ciclo Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/patologia , Humanos , Pulmão/patologia , Nanotubos de Carbono/química , Tamanho da Partícula , Propriedades de Superfície
2.
Am J Pathol ; 186(11): 2887-2908, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27643531

RESUMO

Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.


Assuntos
Diacetil/efeitos adversos , Aromatizantes/efeitos adversos , Pneumopatias/etiologia , Proteína Sequestossoma-1/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Ubiquitina/metabolismo , Animais , Autofagia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Pneumopatias/metabolismo , Pneumopatias/patologia , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Proteína Sequestossoma-1/genética , Desidrogenase do Álcool de Açúcar/metabolismo
3.
J Appl Toxicol ; 36(1): 161-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25926378

RESUMO

Inhalation exposure to multi-walled carbon nanotubes (MWCNT) in mice results in inflammation, fibrosis and the promotion of lung adenocarcinoma; however, the molecular basis behind these pathologies is unknown. This study determined global mRNA and miRNA profiles in whole blood from mice exposed by inhalation to MWCNT that correlated with the presence of lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma. Six-week-old, male, B6C3F1 mice received a single intraperitoneal injection of either the DNA-damaging agent methylcholanthrene (MCA, 10 µg g(-1) body weight) or vehicle (corn oil). One week after injections, mice were exposed by inhalation to MWCNT (5 mg m(-3), 5 hours per day, 5 days per week) or filtered air (control) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for the development of pathological changes in the lung, and whole blood was collected and analyzed using microarray analysis for global mRNA and miRNA expression. Numerous mRNAs and miRNAs in the blood were significantly up- or down-regulated in animals developing pathological changes in the lung after MCA/corn oil administration followed by MWCNT/air inhalation, including fcrl5 and miR-122-5p in the presence of hyperplasia, mthfd2 and miR-206-3p in the presence of fibrosis, fam178a and miR-130a-3p in the presence of bronchiolo-alveolar adenoma, and il7r and miR-210-3p in the presence of bronchiolo-alveolar adenocarcinoma, among others. The changes in miRNA and mRNA expression, and their respective regulatory networks, identified in this study may potentially serve as blood biomarkers for MWCNT-induced lung pathological changes.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Neoplasias Pulmonares/genética , Pulmão/patologia , MicroRNAs/sangue , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/genética , RNA Mensageiro/sangue , Adenocarcinoma/etiologia , Adenocarcinoma de Pulmão , Animais , Redes Reguladoras de Genes , Hiperplasia , Exposição por Inalação , Neoplasias Pulmonares/etiologia , Masculino , Camundongos
4.
Part Fibre Toxicol ; 11: 3, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405760

RESUMO

BACKGROUND: Engineered carbon nanotubes are currently used in many consumer and industrial products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures likely. Many of the potential health hazards have not been investigated, including their potential for carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the initiator methylcholanthrene(MCA, 10 µg/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNT (5 mg/m³, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. RESULTS: Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas. The average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively. By contrast, 90.5% of the mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and adenocarcinomas with an average of 2.9 tumors per mouse 17 months after exposure. Indeed, 62% of the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed. Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease. Three mice exposed to both MCA and MWCNT that were euthanized early had lung adenocarcinoma with evidence of metastasis (5.5%). Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to MCA developed serosal tumors morphologically consistent with sarcomatous mesotheliomas, whereas mice administered MWCNT or air alone did not develop similar neoplasms. CONCLUSIONS: These data demonstrate that some MWCNT exposures promote the growth and neoplastic progression of initiated lung cells in B6C3F1 mice. In this study, the mouse MWCNT lung burden of 31.2 µg/mouse approximates feasible human occupational exposures. Therefore, the results of this study indicate that caution should be used to limit human exposures to MWCNT.


Assuntos
Adenocarcinoma/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Nanotubos de Carbono/toxicidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adenoma/induzido quimicamente , Adenoma/patologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Imunofluorescência , Hiperplasia/induzido quimicamente , Hiperplasia/patologia , Exposição por Inalação , Pulmão/patologia , Neoplasias Pulmonares/patologia , Mesotelioma/induzido quimicamente , Mesotelioma/patologia , Camundongos , Camundongos Endogâmicos , Microscopia de Polarização , Infiltração de Neutrófilos/efeitos dos fármacos , Análise de Sobrevida
5.
Part Fibre Toxicol ; 11: 6, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24479647

RESUMO

Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 µg/cm² MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 µm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels.


Assuntos
Mutagênicos , Nanotubos de Carbono/toxicidade , Exposição Ocupacional , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Cromossomos/efeitos dos fármacos , Dano ao DNA , Monitoramento Ambiental , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Microscopia de Força Atômica , Mitose/efeitos dos fármacos , Espectrometria por Raios X , Análise Espectral Raman , Fuso Acromático/efeitos dos fármacos , Células-Tronco
6.
BMC Cancer ; 13: 140, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23517112

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is an aggressive malignancy closely associated with asbestos exposure and extremely resistant to current treatments. It exhibits a steady increase in incidence, thus necessitating an urgent development of effective new treatments. METHODS: Proteasome inhibitors (PIs) and TNFα-Related Apoptosis Inducing Ligand (TRAIL), have emerged as promising new anti-MPM agents. To develop effective new treatments, the proapoptotic effects of PIs, MG132 or Bortezomib, and TRAIL were investigated in MPM cell lines NCI-H2052, NCI-H2452 and NCI-H28, which represent three major histological types of human MPM. RESULTS: Treatment with 0.5-1 µM MG132 alone or 30 ng/mL Bortezomib alone induced a limited apoptosis in MPM cells associated with the elevated Mcl-1 protein level and hyperactive PI3K/Akt signaling. However, whereas 10-20 ng/ml TRAIL alone induced a limited apoptosis as well, TRAIL and PI combination triggered a robust apoptosis in all three MPM cell lines. The robust proapoptotic activity was found to be the consequence of a positive feedback mechanism-governed amplification of caspase activation and cleavage of both Mcl-1 and Akt proteins, and exhibited a relative selectivity in MPM cells than in non-tumorigenic Met-5A mesothelial cells. CONCLUSION: The combinatorial treatment using TRAIL and PI may represent an effective new treatment for MPMs.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias Pleurais/patologia , Inibidores de Proteassoma/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma Maligno , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
7.
Toxicol Pathol ; 41(2): 395-409, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23389777

RESUMO

Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.


Assuntos
Nanotecnologia , Patologia , Toxicologia , Animais , Humanos
8.
FASEB J ; 24(12): 4989-5002, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20798247

RESUMO

Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD), thought to be mediated by manganese (Mn) in the fumes. Also, there is a proposition that welding might accelerate the onset of PD. Our recent findings link the presence of Mn in the WF with dopaminergic neurotoxicity seen in rats exposed to manual metal arc-hard surfacing (MMA-HS) or gas metal arc-mild steel (GMA-MS) fumes. To elucidate the molecular mechanisms further, we investigated the association of PD-linked (Park) genes and mitochondrial function in causing dopaminergic abnormality. Repeated instillations of the two fumes at doses that mimic ∼1 to 5 yr of worker exposure resulted in selective brain accumulation of Mn. This accumulation caused impairment of mitochondrial function and loss of tyrosine hydroxylase (TH) protein, indicative of dopaminergic injury. A fascinating finding was the altered expression of Parkin (Park2), Uchl1 (Park5), and Dj1 (Park7) proteins in dopaminergic brain areas. A similar regimen of manganese chloride (MnCl(2)) also caused extensive loss of striatal TH, mitochondrial electron transport components, and Park proteins. As mutations in PARK genes have been linked to early-onset PD in humans, and because welding is implicated as a risk factor for parkinsonism, PARK genes might play a critical role in WF-mediated dopaminergic dysfunction. Whether these molecular alterations culminate in neurobehavioral and neuropathological deficits reminiscent of PD remains to be ascertained.


Assuntos
Manganês/toxicidade , Doença de Parkinson/metabolismo , Soldagem , Poluentes Ocupacionais do Ar/toxicidade , Animais , Western Blotting , Cloretos/toxicidade , Exposição por Inalação/efeitos adversos , Masculino , Manganês/metabolismo , Compostos de Manganês , Exposição Ocupacional/efeitos adversos , Doença de Parkinson/etiologia , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Curr Biol ; 16(23): 2352-8, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17070683

RESUMO

Stem cells are maintained and retain their capacity to continue dividing because of the influence of a niche. Although niches are important to maintain "stemness" in a wide variety of tissues, control of these niches is poorly understood. The Drosophila germline stem cells (GSCs) reside in a somatic cell niche. We show that Notch activation can induce the expression of niche-cell markers even in an adult fly; overexpression of Delta in the germline, or activated Notch in the somatic cells, results in extra niche cells, up to 10-fold over the normal number. In turn, these ectopic niche cells induce ectopic GSCs. Conversely, when GCSs do not produce functional Notch ligands, Delta and Serrate, the TGF-beta pathway is not activated in the GSCs, and they differentiate and subsequently leave the niche. Importantly, clonal analysis reveals that the receiving end of the Notch pathway is required in the somatic cells. These data show that a feedback loop exists between the stem cells and niche cells. Demonstration that stem cells can contribute to niche function has far-reaching consequences for stem cell therapies and may provide insight into how cancer can spread throughout an organism via populations of cancer stem cells.


Assuntos
Proteínas de Drosophila/fisiologia , Ovário/fisiologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Drosophila , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Jagged-1 , Proteínas de Membrana/fisiologia , Proteínas Serrate-Jagged , Fator de Crescimento Transformador beta/fisiologia
10.
Toxicol Appl Pharmacol ; 233(1): 81-91, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18367224

RESUMO

The incidence of adenocarcinoma of the lung is increasing in the United States, however, the difficulties in obtaining lung cancer families and representative samples of early to late stages of the disease have lead to the study of mouse models for lung cancer. We used Spectral Karyotyping (SKY), mapping with fluorescently labeled genomic clones (FISH), comparative genomic hybridization (CGH) arrays, gene expression arrays, Western immunoblot and real time polymerase chain reaction (PCR) to analyze nine pairs of high-invasive and low-invasive tumor cell strains derived from early passage mouse lung adenocarcinoma cells to detect molecular changes associated with tumor invasion. The duplication of chromosomes 1 and 15 and deletion of chromosome 8 were significantly associated with a high-invasive phenotype. The duplication of chromosome 1 at band C4 and E1/2-H1 were the most significant chromosomal changes in the high-invasive cell strains. Mapping with FISH and CGH array further narrowed the minimum region of duplication of chromosome 1 to 71-82 centimorgans (cM). Expression array analysis and confirmation by real time PCR demonstrated increased expression of COX-2, Translin (TB-RBP), DYRK3, NUCKS and Tubulin-alpha4 genes in the high-invasive cell strains. Elevated expression and copy number of these genes, which are involved in inflammation, cell movement, proliferation, inhibition of apoptosis and telomere elongation, were associated with an invasive phenotype. Similar linkage groups are altered in invasive human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of the progression of human lung adenocarcinoma.


Assuntos
Adenocarcinoma/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Aberrações Cromossômicas , Neoplasias Pulmonares/genética , Adenocarcinoma/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/fisiologia , Cariotipagem/métodos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Especificidade da Espécie , Células Tumorais Cultivadas
11.
Part Fibre Toxicol ; 5: 12, 2008 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-18778475

RESUMO

BACKGROUND: Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 mug of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 mug soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure. RESULTS: BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found. CONCLUSION: The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain.

12.
Cancer Biol Ther ; 5(4): 407-12, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16481740

RESUMO

Translocations and unique chromosome break points in melanoma will aid in the identification of the genes that are important in the neoplastic process. We have previously shown a unique translocation in malignant melanoma cells der(12)t(12;20). The transcription factor E2F1 maps to 20q11. Increased expression of E2F has been associated with the autonomous growth of melanoma cells, however, the molecular basis has not yet been elucidated. To this end, we investigated E2F1 gene copy number and structure in human melanoma cell lines and metastatic melanoma cases. Fluorescent in situ hybridization (FISH) analysis using a specific E2F1 probe indicated increased E2F1 gene copies in melanoma cell lines compared to normal melanocytes. We also observed increased copies of the E2F1 gene in lymph node metastases of melanoma. In addition, Western blot analysis demonstrated increased E2F1 protein levels in 8 out of 9 melanoma cell lines relative to normal melanocytes. Inhibition of E2F1 expression with RNAi also reduced melanoma cell growth. Our results suggest that the release of E2F activity by elevated E2F1 gene copy numbers may play a functional role in melanoma growth.


Assuntos
Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Predisposição Genética para Doença , Melanoma/genética , Melanoma/patologia , Western Blotting , Linhagem Celular Tumoral , Cromossomos Humanos Par 12 , Humanos , Hibridização in Situ Fluorescente , Metástase Linfática , Melanócitos/metabolismo , Melanoma/metabolismo , Interferência de RNA , Translocação Genética
13.
Methods Mol Biol ; 323: 127-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16739573

RESUMO

Targeting induced local lesions in genomes (TILLING) is a general strategy for identifying induced point mutations that can be applied to almost any organism. In this chapter, we describe the basic methodology for high-throughput TILLING. Gene segments are amplified using fluorescently tagged primers, and products are denatured and reannealed to form heteroduplexes between the mutated sequence and its wild-type counterpart. These heteroduplexes are substrates for cleavage by the endonuclease CEL I. Following cleavage, products are analyzed on denaturing polyacrylamide gels using the LI-COR DNA analyzer system. High-throughput TILLING has been adopted by the Arabidopsis TILLING Project (ATP) to provide allelic series of point mutations for the general Arabidopsis community.


Assuntos
Arabidopsis/genética , Técnicas Genéticas , Primers do DNA/química , DNA de Plantas , Corantes Fluorescentes/farmacologia , Genes de Plantas , Genoma de Planta , Modelos Genéticos , Mutagênese , Mutação , Mutação Puntual , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
14.
Cancer Res ; 62(4): 1152-7, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11861397

RESUMO

Although adenocarcinoma is rapidly becoming the most common form of lung cancer in the United States, the difficulty in obtaining lung cancer families and representative samples of the various stages of adenocarcinoma progression has led to intense study of mouse models. As a powerful approach to delineating molecular changes, we have analyzed 15 early-passage mouse cell lines by spectral karyotyping. Entire copies of chromosomes 1, 2, 6, 12, 15, and 19 were gained, and entire copies of chromosomes 4, 7, 8, and 14 were lost. Significant gains of portions of chromosome 1 (93% of the tumor cell lines analyzed), chromosome 2 (53%), chromosome 6 (73%), chromosome 7 (80%), chromosome 12 (47%), and chromosome 15 (73%) and partial loss of chromosome 4 (87%), chromosome 7 (80%), chromosome 8 (53%), chromosome 10 (33%), and chromosome 14 (33%) were observed. Recurrent translocations included 10:del(10)(A1::C1), t(4;8)(C4;A1), and der (1;12)(C2;C2). The minimal regions of chromosomal alteration, 1G1, 2F1, 4C4, 6D, 7F1, 8B3, and 12C2, contain putative susceptibility genes for mouse lung adenocarcinoma. Chromosomal regions containing susceptibility genes linked to tumor size were frequently amplified, whereas regions with susceptibility loci linked to tumor multiplicity were deleted. Similar linkage groups are altered in human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of human lung adenocarcinoma susceptibility.


Assuntos
Adenocarcinoma/genética , Aberrações Cromossômicas , Neoplasias Pulmonares/genética , Animais , Amplificação de Genes , Deleção de Genes , Ligação Genética , Humanos , Cariotipagem , Camundongos , Especificidade da Espécie , Translocação Genética , Células Tumorais Cultivadas
15.
Oncogene ; 23(7): 1405-11, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14661059

RESUMO

The deleted in liver cancer (DLC-1) gene at chromosome 8p21-22 is altered mainly by genomic deletion or aberrant promoter methylation in a large number of human cancers such as breast, liver, colon and prostate and is known to have an inhibitory effect on breast and liver tumor cell growth. Given the high frequency of deletion involving region 8p21-22 in human non-small cell lung carcinoma (NSCLC), we examined alterations of DLC-1 in a series of primary tumors and tumor cell lines and tested effects of DLC-1 on tumor cell growth. A significant decrease or absence of the DLC-1 mRNA expression was found in 95% of primary NSCLC (20/21) and 58% of NSCLC cell lines (11/19). Transcriptional silencing of DLC-1 was primarily associated with aberrant DNA methylation, rather than genomic deletion as 5-aza-2'-deoxycytidine induced reactivation of DLC-1 expression in 82% (9/11) NSCLC cell lines showing downregulated DLC-1. It was further evidenced by an aberrant DLC-1 promoter methylation pattern, which was detected by Southern blotting in 73% (8/11) of NSCLC cell lines with downregulation of the gene. The transfer of DLC-1 into three DLC-1 negative cell lines caused a significant inhibition in cell proliferation and/or a decrease in colony formation. Furthermore, stable transfer of DLC-1 abolished tumorigenicity in nude mice of two cell lines, suggesting that DLC-1 plays a role in NSCLC by acting as a bona fide new tumor suppressor gene.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares , Proteínas Supressoras de Tumor/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Metilação de DNA , Proteínas Ativadoras de GTPase , Humanos , Immunoblotting , Camundongos , Camundongos Nus , Regiões Promotoras Genéticas , Células Tumorais Cultivadas/transplante , Proteínas Supressoras de Tumor/metabolismo
16.
Genetics ; 164(2): 731-40, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12807792

RESUMO

Chemical mutagenesis has been the workhorse of traditional genetics, but it has not been possible to determine underlying rates or distributions of mutations from phenotypic screens. However, reverse-genetic screens can be used to provide an unbiased ascertainment of mutation statistics. Here we report a comprehensive analysis of approximately 1900 ethyl methanesulfonate (EMS)-induced mutations in 192 Arabidopsis thaliana target genes from a large-scale TILLING reverse-genetic project, about two orders of magnitude larger than previous such efforts. From this large data set, we are able to draw strong inferences about the occurrence and randomness of chemically induced mutations. We provide evidence that we have detected the large majority of mutations in the regions screened and confirm the robustness of the high-throughput TILLING method; therefore, any deviations from randomness can be attributed to selectional or mutational biases. Overall, we detect twice as many heterozygotes as homozygotes, as expected; however, for mutations that are predicted to truncate an encoded protein, we detect a ratio of 3.6:1, indicating selection against homozygous deleterious mutations. As expected for alkylation of guanine by EMS, >99% of mutations are G/C-to-A/T transitions. A nearest-neighbor bias around the mutated base pair suggests that mismatch repair counteracts alkylation damage.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Mutagênicos , Mutação , DNA de Plantas/genética , Metanossulfonato de Etila , Deleção de Genes , Genes de Plantas/efeitos dos fármacos , Testes Genéticos , Genoma de Planta , Heterozigoto , Homozigoto , Modelos Genéticos , Mutagênese , Mutação de Sentido Incorreto , Sequências Repetitivas de Ácido Nucleico
17.
Neoplasia ; 6(4): 412-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15256063

RESUMO

The identification of genes undergoing genetic or epigenetic alterations and contributing to the development of cancer is critical to our understanding of the molecular mechanisms of carcinogenesis. A new approach in identifying alterations of genes that might be relevant to the process of tumor development was used in this study by examining the gene expression profile in human lung cancer cells exposed to 5-aza-2'-deoxycytidine (5-aza-dC). A cDNA array analysis was carried out on 5-aza-dC-treated and untreated non small cell lung cancer (NSCLC) cell line NCI-H522. Sixteen and 14 genes were upregulated and downregulated, respectively, by 5-aza-dC treatment. Among them, downregulation of tyrosine protein kinase ABL2 (ABL2) gene and upregulation of hint/protein kinase C inhibitor 1 (Hint/PKCI-1), DVL1, TIMP-1, and TRP-1 genes were found in expanded observations in two or three of five 5-aza-dC-treated NSCLC cell lines. Among these genes, we found that cDNA transfer of Hint/PKCI-1 resulted in a significant in vitro growth inhibition in two cell lines exhibiting 5-aza-dC-induced upregulation of Hint/PKCI-1 and significantly reduced in vivo tumorigenicity of one NSCLC cell line. Hint/PKCI-1, which is the only other characterized human histidine triad (HIT) nucleotide-binding protein in addition to tumor-suppressor gene FHIT, might be involved in lung carcinogenesis.


Assuntos
Azacitidina/análogos & derivados , Azacitidina/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antimetabólitos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Metilação de DNA , Decitabina , Humanos , Cinética , Neoplasias Pulmonares , Análise de Sequência com Séries de Oligonucleotídeos , Transfecção
18.
BMC Plant Biol ; 4: 12, 2004 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-15282033

RESUMO

BACKGROUND: Going from a gene sequence to its function in the context of a whole organism requires a strategy for targeting mutations, referred to as reverse genetics. Reverse genetics is highly desirable in the modern genomics era; however, the most powerful methods are generally restricted to a few model organisms. Previously, we introduced a reverse-genetic strategy with the potential for general applicability to organisms that lack well-developed genetic tools. Our TILLING (Targeting Induced Local Lesions IN Genomes) method uses chemical mutagenesis followed by screening for single-base changes to discover induced mutations that alter protein function. TILLING was shown to be an effective reverse genetic strategy by the establishment of a high-throughput TILLING facility and the delivery of thousands of point mutations in hundreds of Arabidopsis genes to members of the plant biology community. RESULTS: We demonstrate that high-throughput TILLING is applicable to maize, an important crop plant with a large genome but with limited reverse-genetic resources currently available. We screened pools of DNA samples for mutations in 1-kb segments from 11 different genes, obtaining 17 independent induced mutations from a population of 750 pollen-mutagenized maize plants. One of the genes targeted was the DMT102 chromomethylase gene, for which we obtained an allelic series of three missense mutations that are predicted to be strongly deleterious. CONCLUSIONS: Our findings indicate that TILLING is a broadly applicable and efficient reverse-genetic strategy. We are establishing a public TILLING service for maize modeled on the existing Arabidopsis TILLING Project.


Assuntos
Genes de Plantas/genética , Testes Genéticos/métodos , Mutagênese/genética , Mutação Puntual/genética , Zea mays/genética , Metanossulfonato de Etila/farmacologia , Genótipo , Mutagênese/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/efeitos dos fármacos
19.
Methods Mol Biol ; 236: 205-20, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14501067

RESUMO

Targeting-induced local lesions in genomes (TILLING) is a general strategy for identifying induced point mutations that can be applied to almost any organism. Here, we describe the basic methodology for high-throughput TILLING. Gene segments are amplified using fluorescently tagged primers, and products are denatured and reannealed to form heteroduplexes between the mutated sequence and its wild-type counterpart. These heteroduplexes are substrates for cleavage by the endonuclease CEL I. Following cleavage, products are analyzed on denaturing polyacrylamide gels using the LI-COR DNA analyzer system. High-throughput TILLING has been adopted by the Arabidopsis TILLING Project (ATP) to provide allelic series of point mutations for the general Arabidopsis community.


Assuntos
Genes de Plantas/genética , Técnicas Genéticas , Mutagênese/genética , Reação em Cadeia da Polimerase/métodos , DNA de Plantas/química , DNA de Plantas/genética , Mutagênicos/farmacologia , Ácidos Nucleicos Heteroduplexes/genética , Plantas/efeitos dos fármacos , Plantas/genética
20.
Nanotoxicology ; 4: 396-408, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20925447

RESUMO

The development of novel engineered nano-sized materials is a rapidly emerging technology with many applications in medicine and industry. In vitro and in vivo studies have suggested many deleterious effects of carbon nanotube exposure including granulomatous inflammation, release of cytosolic enzymes, pulmonary fibrosis, reactive oxygen damage, cellular atypia, DNA fragmentation, mutation and errors in chromosome number as well as mitotic spindle disruption. The physical properties of the carbon nanotubes make respiratory exposure to workers likely during the production or use of commercial products. Many of the investigations of the genotoxicity of carbon nanotubes have focused on reactive oxygen mediated DNA damage; however, the long thin tubular-shaped carbon nanotubes have a striking similarity to cellular microtubules. The similarity of carbon nanotubes to microtubules suggests a potential to interact with cellular biomolecules, such as the mitotic spindle, as well as the motor proteins that separate the chromosomes during cell division. Disruption of centrosomes and mitotic spindles would result in monopolar, tripolar, and quadrapolar divisions of chromosomes. The resulting aneuploidy is a key mechanism in the potential carcinogenicity of carbon nanotubes.


Assuntos
Nanotubos de Carbono/toxicidade , Animais , Linhagem Celular Tumoral , Humanos , Testes de Mutagenicidade/métodos , Nanotubos de Carbono/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa