Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30601, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742054

RESUMO

Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25953566

RESUMO

Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells.


Assuntos
Plasma/química , Polietileno/química , Polietileno/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Camundongos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos
3.
Nanoscale Res Lett ; 9(1): 305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24994960

RESUMO

Two different procedures of grafting with silver nanoparticles (AgNP) of polyethylene terephthalate (PET), activated by plasma treatment, are studied. In the first procedure, the PET foil was grafted with biphenyl-4,4'-dithiol and subsequently with silver nanoparticles. In the second one, the PET foil was grafted with silver nanoparticles previously coated with the same dithiol. X-ray photoelectron spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Silver nanoparticles were characterized by ultraviolet-visible spectroscopy and by transmission electron microscopy (TEM). The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma-activated PET and that it mediates subsequent grafting of the silver nanoparticles. AgNP previously coated by dithiol bonded to the PET surface much less.

4.
Nanoscale Res Lett ; 8(1): 252, 2013 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23705782

RESUMO

Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity.

5.
Nanoscale Res Lett ; 6(1): 607, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22117780

RESUMO

Surface of polyethyleneterephthalate (PET) was modified by plasma discharge and subsequently grafted with dithiols (1, 2-ethanedithiol (ED) or 4, 4'-biphenyldithiol) to create the thiol (-SH) groups on polymer surface. This "short" dithiols are expected to be fixed via one of -SH groups to radicals created by the plasma treatment on the PET surface. "Free" -SH groups are allowed to interact with Au nanoparticles. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrokinetic analysis (EA, zeta potential) were used for the characterization of surface chemistry of the modified PET. Surface morphology and roughness of the modified PET were studied by atomic force microscopy (AFM). The results from XPS, FTIR, EA and AFM show that the Au nanoparticles are grafted on the modified surface only in the case of biphenyldithiol pretreatment. The possible explanation is that the "flexible" molecule of ethanedithiol is bounded to the activated PET surface with both -SH groups. On the contrary, the "rigid" molecule of biphenyldithiol is bounded via only one -SH group to the modified PET surface and the second one remains "free" for the consecutive chemical reaction with Au nanoparticle. The gold nanoparticles are distributed relatively homogenously over the polymer surface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa