Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 86(2-3): 51-68, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543759

RESUMO

Vassobia breviflora (Sendtn.) Hunz is a plant of the Solanaceae family from South America and there are no apparent studies reported on the biological activity of the hexane extract. The aim of this investigation was to conduct phytochemical analyses using ESI-TOF-MS, while antioxidant activities were evaluated by the following methods 1,1-diphenyl-2-picrylhydrazyl (DPPH) 2,2"-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), ferric reducing antioxidant power (FRAP), total antioxidant capacity (TAC), and total oxidant status (TOS). Antimicrobial activities were performed by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm formed. Cytotoxicity was measured by MTT and dsDNA PicoGreen tests, beyond the production of reactive oxygen species (ROS) determined by Dichlorodihydrofluorescein diacetate (DCFH-DA). The hexane extract showed the presence of 5 (choline, pantothenic acid, calystegine B, lanciphodylactone I, and 15"-cis-zeaxanthin) compounds detected. V. breviflora extract demonstrated reliable results utilizing different antioxidant methods. In antibacterial activity, V. breviflora extract exhibited inhibitory, bactericidal, and antibiofilm action in biofilm-forming bacteria. The hexane extract exhibited cytotoxicity against melanoma, lung cancer, glioblastoma, leukemia, uterine colon, and hepatocarcinoma tumor cells. In addition, all tested strains resulted in increased production of ROS. This plant extract may be considered in future as an alternative for development of new therapeutic options aimed at the treatment of diverse pathologies.


Assuntos
Antioxidantes , Solanaceae , Antioxidantes/farmacologia , Antioxidantes/química , Espécies Reativas de Oxigênio , Hexanos , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia
2.
Environ Sci Pollut Res Int ; 31(17): 25437-25453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472573

RESUMO

2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide and is among the most widely distributed pollutant in the environment and wastewater. Herein is presented a complete comparison of adsorption performance between two different magnetic carbon nanomaterials: graphene oxide (GO) and its reduced form (rGO). Magnetic functionalization was performed employing a coprecipitation method, using only one source of Fe2+, requiring low energy, and potentially allowing the control of the amount of incorporated magnetite. For the first time in literature, a green reduction approach for GO with and without Fe3O4, maintaining the magnetic behavior after the reaction, and an adsorption performance comparison between both carbon nanomaterials are demonstrated. The nanoadsorbents were characterized by FTIR, XRD, Raman, VSM, XPS, and SEM analyses, which demonstrates the successful synthesis of graphene derivate, with different amounts of incorporate magnetite, resulting in distinct magnetization values. The reduction was confirmed by XPS and FTIR techniques. The type of adsorbent reveals that the amount of magnetite on nanomaterial surfaces has significant influence on adsorption capacity and removal efficiency. The procedure demonstrated that the best performance, for magnetic nanocomposites, was obtained by GO∙Fe3O4 1:1 and rGO∙Fe3O4 1:1, presenting values of removal percentage of 70.49 and 91.19%, respectively. The highest adsorption capacity was reached at pH 2.0 for GO∙Fe3O4 1:1 (69.98 mg g-1) and rGO∙Fe3O4 1:1 (89.27 mg g-1), through different interactions: π-π, cation-π, and hydrogen bonds. The adsorption phenomenon exhibited a high dependence on pH, initial concentration of adsorbate, and coexisting ions. Sips and PSO models demonstrate the best adjustment for experimental data, suggesting a heterogeneous surface and different energy sites, respectively. The thermodynamic parameters showed that the process was spontaneous and exothermic. Finally, the nanoadsorbents demonstrated a high efficiency in 2,4-D adsorption even after five adsorption/desorption cycles.


Assuntos
Grafite , Herbicidas , Nanocompostos , Poluentes Químicos da Água , Adsorção , Herbicidas/análise , Grafite/química , Óxido Ferroso-Férrico , Água/química , Nanocompostos/química , Fenômenos Magnéticos , Ácido 2,4-Diclorofenoxiacético , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
3.
Environ Sci Pollut Res Int ; 30(5): 12658-12671, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36114403

RESUMO

Due to its wide use in anticonvulsant pharmacotherapy, phenobarbital (PHEN) is an aquatic contaminant with a high prevalence in the environment. In this adsorption study, chitosan and chitosan-based magnetic adsorbents containing different amounts of incorporated magnetite (CS, CS·Fe3O4 1:1, CS·Fe3O4 1:5, and CS·Fe3O4 1:10) were used for phenobarbital removal. The magnetic adsorbents were synthesized by co-precipitation method and characterized through FTIR, XRD, MEV, and VSM analysis. In PHEN adsorption, the equilibrium and adsorption kinetic were better adjusted by the Sips and pseudo-second-order model, respectively. Among the four nanoadsorbents used, the maximum phenobarbital adsorption capacity was 94.60 mg g-1 using 25 mg of CS·Fe3O4 1:5, with a concentration of PHEN (50 mg L-1), pH 7.0 at room temperature. The parameters of pH, adsorbent dosage, ionic strength, and thermodynamic study were tested for the adsorbent with the highest performance (CS·Fe3O4 1:5). The nanoadsorbent demonstrates efficiency in the removal of the contaminant for diverse adsorption cycles. Finally, the protocol employing magnetic adsorbents dispenses the subsequent steps of filtration and centrifugation.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Óxido Ferroso-Férrico/química , Concentração de Íons de Hidrogênio , Termodinâmica , Adsorção , Água/química , Cinética , Poluentes Químicos da Água/química , Purificação da Água/métodos , Fenobarbital
4.
Cancer Diagn Progn ; 3(6): 616-634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927802

RESUMO

Renal neoplasms are highlighted as one of the 10 most common types of cancer. Renal cell carcinoma (RCC) is the most common type of renal cancer, considered the seventh most common type of cancer in the Western world. The most frequently altered genes described as altered are VHL, PBRM1, SETD2, KDM5C, PTEN, BAP1, mTOR, TP53, TCEB1 (ELOC), SMARCA4, ARID1A, and PIK3CA. RCC therapies can be classified in three groups: monoclonal antibodies, tyrosine kinase inhibitors, and mTOR inhibitors. Besides, there are targeted agents to treat RCC. However, frequently patients present side effects and resistance. Even though many multidrug resistance mechanisms already have been reported to RCC, studies focused on revealing new biomarkers as well as more effective antitumor therapies with no or low side effects are very important. Some studies reported that natural products, such as honey, epigallocatechin-3-gallate (EGCG), curcumin, resveratrol, and englerin A showed antitumor activity against RCC. Moreover, nanoscience is another strategy to improve RCC treatment and reduce the side effects due to the improvement in pharmacokinetics and reduction of toxicities of chemotherapies. Taking this into account, we conducted a systemic review of recent research findings on RCC hallmarks, drug resistance, and adjuvant therapies. In conclusion, a range of studies reported that RCC is characterized by high incidence and increased mortality rates because of the development of resistance to standard therapies. Given the importance of improving RCC treatment and reducing adverse effects, nanoscience and natural products can be included in therapeutic strategies.

5.
Environ Sci Pollut Res Int ; 29(3): 3794-3807, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34396477

RESUMO

The pollution of wastewater with dyes has become a serious environmental problem around the world. In this context, the work aims to synthesize and characterize a supported nanocatalyst (NZ-180) from rice husk (RH) and alum sludge (AS) incorporating silver (AgNPs@NZ-180) and titanium nanoparticles (TiNPs@NZ-180) for Rhodamine B (RhB) dye degradation, under UV and visible irradiation. Central rotatable composite design (CRCD) was used to determine ideal conditions, using nanocatalyst and dye concentration such as input variables and degradation percentage like response variable. Samples were characterized by XRD, SEM-EDS, N2 porosimetry, DLS, and zeta potential analyses. TiNPs@NZ-180 showed the best photocatalytic activity (62.62 and 50.82% under UV and visible irradiation, respectively). Specific surface area has increased from 35.90 to 418.90 m2 g-1 for NZ-180 and TiNPs@NZ-180, respectively. Photocatalytic performance of TiNPs@NZ-180 has reduced to 8 and 10% after 5 cycles under UV and visible light irradiation. Ideal conditions found by CRCD were 2.75 g L-1 and 20 mg L-1 for nanocatalyst and RhB concentrations, respectively. Therefore, (agro)industrial waste present such an alternative material for application in the removal of wastewater with dyes, which helps in the reduction of the impact of chemicals/pollutants on human and animal health.


Assuntos
Resíduos Industriais , Prata , Animais , Catálise , Corantes , Humanos , Luz , Titânio , Águas Residuárias
6.
Environ Sci Pollut Res Int ; 29(46): 70413-70434, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35585459

RESUMO

Emerging pollutants are a group of substances involved in environmental contamination resulting mostly from incomplete drug metabolism, associated with inadequate disposal and ineffective effluent treatment techniques. Methotrexate (MTX), for instance, is excreted at high concentrations in unchanged form through the urine. Although the MTX is still effective in cancer and autoimmune disease treatment, this drug shows the ability of bioaccumulation and toxicity to the organism. Thus, the present work aimed to evaluate the adsorption of the MTX drug onto magnetic nanocomposites containing different amounts of incorporated magnetite (1:1, 1:5, and 1:10 wt%), combining the theoretical-experimental study as well as the in vitro cytotoxicity. Moreover, equilibrium studies (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Hill, Redlich-Peterson, and Sips), kinetic (PFO, PSO, and IPD), and thermodynamic (ΔG°, ΔH°, and ΔS°) were used to describe the experimental data, and ab initio simulations were employed in the theoretical study. Magnetic nanocomposites were synthesized by the co-precipitation method using only FeCl2 as the iron precursor. Adsorbents were characterized by FTIR, XRD, Raman, SEM-EDS, BET, and VSM analysis. Meanwhile, cytotoxic effects on L929 and A375 cell lines were evaluated through MTT, NR, and LDH assays. The adsorption of the MTX was carried out in a typical batch system, exploring the different experimental conditions. The theoretical study suggests the occurrence of chemisorption between CS·Fe3O4-MTX. The maximum adsorption capacity of MTX was 285.92 mg g-1, using 0.125 g L-1 of CS·Fe3O4 1:1, with an initial concentration of the MTX (50 mg L-1), pH 4.0 at 293 ± 1.00 K. The best adjustment of equilibrium and kinetic data were the Sips (low values for statistical errors) and PSO (qe = 96.73 mg g-1) models, respectively. Thermodynamic study shows that the adsorption occurred spontaneously (ΔG° < 0), with exothermic (ΔH° = - 4698.89 kJ mol-1) and random at the solid-solution interface (ΔS° = 1,476,022.00 kJ mol-1 k-1) behavior. Finally, the in vitro study shows that magnetic nanomaterials exhibit higher cytotoxicity in melanoma cells. Therefore, the magnetic nanocomposite reveals to be not only an excellent tool for water remediation studies but also a promising platform for drug delivery.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Óxido Ferroso-Férrico , Concentração de Íons de Hidrogênio , Ferro/análise , Cinética , Metotrexato/análise , Temperatura , Termodinâmica , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa