Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(46): e202301610, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265455

RESUMO

N-Heterocyclic carbenes (NHCs) have drawn considerable interest in the field of nanomaterials chemistry as highly stabilizing ligands enabling the formation of strong and covalent carbon-metal bonds. Applied to gold nanoparticles synthesis, the most common strategy consists of the reduction of a preformed NHC-AuI complex with a large excess of a reducing agent that makes the particle size difficult to control. In this paper, we report the straightforward synthesis of NHC-coated gold nanoparticles (NHC-AuNPs) by treating a commercially available gold(I) precursor with an easy-to-synthesize NHC-BH3 reagent. The latter acts as both the reducing agent and the source of surface ligands operating under mild conditions. Mechanistic studies including NMR spectroscopy and mass spectrometry demonstrate that the reduction of gold(I) generates NHC-BH2 Cl as a by-product. This strategy gives efficient control over the nucleation and growth of gold particles by varying the NHC-borane/gold(I) ratio, allowing unparalleled particle size variation over the range of 4.9±0.9 to 10.0±2.7 nm. Our strategy also allows an unprecedented precise and controlled seeded growth of gold nanoparticles. In addition, the as-prepared NHC-AuNPs exhibit narrow size distributions without the need for extensive purification or size-selectivity techniques, and are stable over months.

2.
Chemistry ; 25(49): 11481-11485, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31206813

RESUMO

N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC-borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5 h). NPs with a size distribution of 11.6±1.8 nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC-borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.

3.
Small ; 13(20)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371306

RESUMO

A basic understanding of the driving forces for the formation of multiligand coronas or self-assembled monolayers over metal nanoparticles is mandatory to control and predict the properties of ligand-protected nanoparticles. Herein, 1 H nuclear magnetic resonance experiments and advanced density functional theory (DFT) modeling are combined to highlight the key parameters defining the efficiency of ligand exchange on dispersed gold nanoparticles. The compositions of the surface and of the liquid reaction medium are quantitatively correlated for bifunctional gold nanoparticles protected by a range of competing thiols, including an alkylthiol, arylthiols of varying chain length, thiols functionalized by ethyleneglycol units, and amide groups. These partitions are used to build scales that quantify the ability of a ligand to exchange dodecanethiol. Such scales can be used to target a specific surface composition by choosing the right exchange conditions (ligand ratio, concentrations, and particle size). In the specific case of arylthiols, the exchange ability scale is exploited with the help of DFT modeling to unveil the roles of intermolecular forces and entropic effects in driving ligand exchange. It is finally suggested that similar considerations may apply to other ligands and to direct biligand synthesis.

4.
Inorg Chem ; 55(21): 11502-11512, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27731982

RESUMO

An aqueous synthetic route at 95 °C is developed to reach selectively three scarcely reported vanadium oxyhydroxides. Häggite V2O3(OH)2, Duttonite VO(OH)2, and Gain's hydrate V2O4(H2O)2 are obtained as nanowires, nanorods, and nanoribbons, with sizes 1 order of magnitude smaller than previously reported. X-ray absorption spectroscopy provides evidence that vanadium in these phases is V+IV. Combined with FTIR, XRD, and electron microscopy, it yields the first insights into formation mechanisms, especially for Häggite and Gain's hydrate. This study opens the way for further investigations of the properties of novel V+IV (oxyhydr)oxides nanostructures.

5.
ACS Appl Mater Interfaces ; 16(11): 13869-13881, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466181

RESUMO

Poly(ethylene glycol) methyl ether methacrylate polymer networks (PEO-based networks), with or without anionic bis(trifluoromethanesulfonyl)imide (TFSI)-grafted groups, are promising electrolytes for Li-metal all solid-state batteries. Nevertheless, there is a need to enhance our current understanding of the physicochemical characteristics of these polymer networks to meet the mechanical and ionic conductivity property requirements for Li battery electrolyte materials. To address this challenge, our goal is to investigate the impact of the cross-linking density of the PEO-based network and the ethylene oxide/lithium ratio on mechanical properties (such as glass transition temperature and storage modulus) and ionic conductivity. We have synthesized a series of cross-linked PEO-based polymers (si-SPE for single ion solid polymer electrolyte) via solvent-free radical copolymerization. These polymers are synthesized by using commercially available lithium 3-[(trifluoromethane)sulfonamidosulfonyl]propyl methacrylate (LiMTFSI), poly(ethylene glycol)methyl ether methacrylate (PEGM), and [poly(ethylene glycol) dimethacrylate] (PEGDM). In addition, we have synthesized a series of cross-linked PEO-based polymers (SPE for solid polymer electrolyte) using LiTFSI as the ionic species. Most of the resulting polymer films are amorphous, self-standing, flexible, homogeneous, and thermally stable. Interestingly, our research has revealed a correlation between ionic conductivity and mechanical properties in both the SPE and si-SPE series. Ionic conductivity increases as glass transition temperature, α relaxation temperature, and storage modulus decrease, suggesting that Li+ transport is influenced by polymer chain flexibility and Li+/EO interaction.

6.
Chemistry ; 19(19): 6122-36, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23512788

RESUMO

New, ultrasmall nanoparticles with sizes below 5 nm have been obtained. These small rigid platforms (SRP) are composed of a polysiloxane matrix with DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid)-Gd(3+) chelates on their surface. They have been synthesised by an original top-down process: 1) formation of a gadolinium oxide Gd2O3 core, 2) encapsulation in a polysiloxane shell grafted with DOTAGA ligands, 3) dissolution of the gadolinium oxide core due to chelation of Gd(3+) by DOTAGA ligands and 4) polysiloxane fragmentation. These nanoparticles have been fully characterised using photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR) to demonstrate the dissolution of the oxide core and by inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry, fluorescence spectroscopy, (29)Si solid-state NMR, (1)H NMR and diffusion ordered spectroscopy (DOSY) to determine the nanoparticle composition. Relaxivity measurements gave a longitudinal relaxivity r1 of 11.9 s(-1) mM(-1) per Gd at 60 MHz. Finally, potentiometric titrations showed that Gd(3+) is strongly chelated to DOTAGA (complexation constant logß110 =24.78) and cellular tests confirmed the that nanoconstructs had a very low toxicity. Moreover, SRPs are excreted from the body by renal clearance. Their efficiency as contrast agents for MRI has been proved and they are promising candidates as sensitising agents for image-guided radiotherapy.


Assuntos
Gadolínio/química , Compostos Heterocíclicos com 1 Anel/química , Dióxido de Silício/química , Siloxanas/química , Substância P/análogos & derivados , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Radioterapia Guiada por Imagem , Espectrometria de Fluorescência , Substância P/química
7.
Chempluschem ; 88(5): e202300038, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36861404

RESUMO

Hydrosilylation reactions are commonly used for the reduction of carbonyl bonds in fine chemistry, catalyzed by transition metal complexes. The current challenge is to expand the scope of metal-free alternative catalysts, including in particular organocatalysts. This work describes the organocatalyzed hydrosilylation of benzaldehyde with a phosphine, introduced at 10 mol%, and phenylsilane at room temperature. The activation of phenylsilane was highly dependent on the physical properties of the solvent such as the polarity, and the highest conversions were obtained in acetonitrile and propylene carbonate with yields of 46 % and 97 %, respectively. The best results of the screening over 13 phosphines and phosphites were obtained with linear trialkylphoshines (PMe3 , Pn Bu3 , POct3 ), indicating the importance of their nucleophilicity, with yields of 88 %, 46 % and 56 %, respectively. With the help of heteronuclear 1 H-29 Si NMR spectroscopy, the products of the hydrosilylation (PhSiH3-n (OBn)n ) were identified, allowing a monitoring of the concentration in the different species, and thereby of their reactivity. The reaction displayed an induction period of ca. 60 min, followed by the sequential hydrosilylations presenting various reaction rates. In agreement with the formation of partial charges in the intermediate state, we propose a mechanism based on a hypervalent silicon center via the Lewis base activation of the silicon Lewis acid.

8.
J Biotechnol ; 374: 80-89, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567503

RESUMO

Although the presence of silica in many living organisms offers advanced properties including cell protection, the different in vitro attempts to build living materials in pure silica never favoured the cells viability. Thus, little attention has been paid to host-guest interactions to modify the expected biologic response. Here we report the physiological changes undergone by Escherichia coli K-12 in silica from colloidal solution to gel confinement. We show that the physiological alterations in growing cultures are not triggered by the initial oxidative Reactive Oxygen Species (ROS) response. Silica promotes the induction of alternative metabolic pathways along with an increase of growth suggesting the existence of rpoS polymorphisms. Since the functionality of hybrid materials depends on the specific biologic responses of their guests, such cell physiological adaptation opens perspectives in the design of bioactive devices attracting for a large field of sciences.


Assuntos
Produtos Biológicos , Escherichia coli K12 , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Dióxido de Silício , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Escherichia coli/metabolismo , Adaptação Fisiológica
9.
Chem Soc Rev ; 40(2): 829-48, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21170460

RESUMO

Today the capability to rationally design and construct hybrid materials utilizing a performance-property driven methodology is strongly dependent on our ability to control the structure and the dynamics of hybrid interfaces. This control needs a deep knowledge of their molecular and supramolecular dynamics that must be evaluated in situ, in the soft matter or colloidal states. For this purpose the use of modern methodologies of characterization such as time resolved synchrotron experiments and advanced pulsed field gradient NMR methods (DOSY) is particularly relevant. In this critical review, two important examples are discussed. They concern, first, the study of surface capping organic components' affinity towards nanoparticle surfaces by DOSY NMR. The knowledge and therefore the tuning of this affinity is paramount because it controls solubility, transferability and stability of colloidal dispersions of nanoparticles (NPs). In the second part, the mechanism of micellar templated formation of hybrid mesophases will be discussed in the frame of the main results obtained via in situ SAXS (107 references).

10.
RSC Adv ; 11(56): 35440-35454, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493150

RESUMO

Fabrication of precursor-derived ceramic fibers as electrodes for energy storage applications remains largely unexplored. Within this work, three little known polymer-derived ceramic (PDC)-based fibers are being studied systemically as potential high-capacity electrode materials for electrochemical energy devices. We report fabrication of precursor-derived SiOC fibermats via one-step spinning from various compositions of siloxane oligomers followed by stabilization and pyrolysis at 800 °C. Electron microscopy, Raman, FTIR, XPS, and NMR spectroscopies reveal transformation from polymer to ceramic stages of the various SiOC ceramic fibers. The ceramic samples are a few microns in diameter with a free carbon phase embedded in the amorphous Si-O-C structure. The free carbon phase improves the electronic conductivity and provides major sites for ion storage, whereas the Si-O-C structure contributes to high efficiency. The self-standing electrodes in lithium-ion battery half-cells deliver a charge capacity of 866 mA h gelectrode -1 with a high initial coulombic efficiency of 72%. As supercapacitor electrode, SiOC fibers maintain 100% capacitance over 5000 cycles at a current density of 3 A g-1.

11.
Biomaterials ; 219: 119357, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351245

RESUMO

In the last few years, zwitterionic polymers have been developed as antifouling surface coatings. However, their ability to completely suppress protein adsorption at the surface of nanoparticles in complex biological media remains undemonstrated. Here we investigate the formation of hard (irreversible) and soft (reversible) protein corona around model nanoparticles (NPs) coated with sulfobetaine (SB), phosphorylcholine (PC) and carboxybetaine (CB) polymer ligands in model albumin solutions and in whole serum. We show for the first time a complete absence of protein corona around SB-coated NPs, while PC- and CB-coated NPs undergo reversible adsorption or partial aggregation. These dramatic differences cannot be described by naïve hard/soft acid/base electrostatic interactions. Single NP tracking in the cytoplasm of live cells corroborate these in vitro observations. Finally, while modification of SB polymers with additional charged groups lead to consequent protein adsorption, addition of small neutral targeting moieties preserves antifouling and enable efficient intracellular targeting.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanopartículas/química , Polímeros/química , Coroa de Proteína/química , Betaína/análogos & derivados , Betaína/química , Biotina/química , Hidrodinâmica , Ligantes , Fosforilcolina/química , Pontos Quânticos/química
12.
Soft Matter ; 4(4): 735-738, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32907176

RESUMO

The first example of complex coacervation between a biopolymer and polyoxometalate clusters is identified in the gelatin-decavanadate system.

13.
Materials (Basel) ; 10(8)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786939

RESUMO

The hydrolysis-condensation of trialkoxysilanes under strictly controlled conditions allows the production of silsesquioxanes (SSQs) with tunable size and architecture ranging from ladder to cage-like structures. These nano-objects can serve as building blocks for the preparation of hybrid organic/inorganic materials with selected properties. The SSQs growth can be tuned by simply controlling the reaction duration in the in situ water production route (ISWP), where the kinetics of the esterification reaction between carboxylic acids and alcohols rules out the extent of organosilane hydrolysis-condensation. Tunable SSQs with thiol functionalities (SH-NBBs) are suitable for further modification by exploiting the simple thiol-ene click reaction, thus allowing for modifying the wettability properties of derived coatings. In this paper, coatings were prepared from SH-NBBs with different architecture onto cotton fabrics and paper, and further functionalized with long alkyl chains by means of initiator-free UV-induced thiol-ene coupling with 1-decene (C10) and 1-tetradecene (C14). The coatings appeared to homogeneously cover the natural fibers and imparted a multi-scale roughness that was not affected by the click functionalization step. The two-step functionalization of cotton and paper warrants a stable highly hydrophobic character to the surface of natural materials that, in perspective, suggests a possible application in filtration devices for oil-water separation. Furthermore, the purification of SH-NBBs from ISWP by-products was possible during the coating process, and this step allowed for the fast, initiator-free, click-coupling of purified NBBs with C10 and C14 in solution with a nearly quantitative yield. Therefore, this approach is an alternative route to get sol-gel-derived, ladder-like, and cage-like SSQs functionalized with long alkyl chains.

14.
ACS Nano ; 11(7): 7371-7381, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28613838

RESUMO

Nanophase segregation of a bicomponent thiol self-assembled monolayer is predicted using atomistic molecular dynamics simulations and experimentally confirmed. The simulations suggest the formation of domains rich in acid-terminated chains, on one hand, and of domains rich in amide-functionalized ethylene glycol oligomers, on the other hand. In particular, within the amide-ethylene glycol oligomers region, a key role is played by the formation of interchain hydrogen bonds. The predicted phase segregation is experimentally confirmed by the synthesis of 35 and 15 nm gold nanoparticles functionalized with several binary mixtures of ligands. An extensive study by transmission electron microscopy and electron tomography, using silica selective heterogeneous nucleation on acid-rich domains to provide electron contrast, supports simulations and highlights patchy nanoparticles with a trend toward Janus nano-objects depending on the nature of the ligands and the particle size. These results validate our computational platform as an effective tool to predict nanophase separation in organic mixtures on a surface and drive further exploration of advanced nanoparticle functionalization.

15.
Chem Commun (Camb) ; (8): 1019-21, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15719102

RESUMO

Complexation affinity of laurate ligands (C(12)H(23)O(2)) grafted onto the surface of cerium(IV) oxide nanoparticles can be probed and quantified in situ, by pulsed field gradient (1)H NMR through the dependence of the diffusion coefficient on the size of a species.

16.
ACS Nano ; 9(7): 7572-82, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26161962

RESUMO

Although gold nanoparticles stabilized by organic thiols are the building blocks in a wide range of applications, the role of the ligands on the plasmon resonance of the metal core has been mostly ignored until now. Herein, a methodology based on the combination of spectroscopic ellipsometry and UV-vis spectroscopy is applied to extract dielectric functions of the different components. It is shown that aromatic thiols allow a significant charge transfer at the hybrid interface with the s and d bands of the gold core that yields "giant" red shifts of the plasmon band, up to 40 nm for spherical particles in the size range of 3-5 nm. These results suggest that hybrid nanoplasmonic devices may be designed through the suitable choice of metal core and organic components for optimized charge exchange.

17.
J Magn Reson ; 231: 46-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23567882

RESUMO

Pulsed Field-Gradient Spin Echo (PGSE) NMR, which associates to a spectral dimension the measure of diffusion coefficients, is a convenient technique for mixture analysis. Unfortunately, because of relaxation, the quantification of mixtures by PGSE NMR is far from straightforward for mixtures with strong spectral overlap. Antalek (J. Am. Chem. Soc. 128 (2006) 8402-8403) proposed a quantification strategy based on DECRA analysis and extrapolation to zero of the diffusion delay. More recently, Barrère et al. (J. Magn. Reson. 216 (2012) 201-208) presented a new strategy based also on DECRA and on the renormalization of the intensities using estimates of the T1 and T2 relaxation times. Here we report an alternative quantification approach in which the fractions are obtained by analyzing the PGSE attenuation profile with a general Stejskal-Tanner equation that explicitly includes the relaxation effects. The required values of T1 and T2 relaxation times are either independently measured with conventional sequences or determined, along with the fractions and the diffusion coefficients, from the simultaneous analysis of up to 6 PGSE data sets recorded with different diffusion delays. This method yields errors lower than 3% for the fractions, even for complete spectral overlap, as demonstrated on model binary and ternary mixtures of polystyrene in the case of a convection compensating double stimulated echo (DSTE) sequence.


Assuntos
Algoritmos , Misturas Complexas/análise , Polímeros/análise , Soluções/química , Misturas Complexas/química , Polímeros/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
18.
Chem Commun (Camb) ; 47(5): 1464-6, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21165479

RESUMO

Self-assembled nanoporous tin-based hybrid thin films prepared by the sol-gel method from organically-bridged ditin hexaalkynides detect hydrogen gas from 50 to 200 °C at the 200-10,000 ppm level. This finding opens a fully new class of gas-sensing materials as well as a new opportunity to integrate organic functionality in gas sensing metal oxides.

20.
Phys Rev Lett ; 101(9): 098101, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18851663

RESUMO

We study by synchrotron small-angle x-ray scattering highly aligned lamellar phases of a zwitterionic surfactant, doped with monodisperse and spherical hydrophobic inorganic particles as a function of particle concentration. Analysis of the structure factor of the two-dimensional fluid formed by the particles in the plane of the bilayer gives access to their membrane-mediated interaction, which is repulsive, with a contact value of about 4kBT and a range of 14 angstroms. Systematic application of this technique should lead to a better understanding of the interaction between membrane inclusions.


Assuntos
Dimetilaminas/química , Bicamadas Lipídicas/química , Tensoativos/química , Fenômenos Químicos , Química Inorgânica , Análise de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa