Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Econ Entomol ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39419818

RESUMO

Knowledge of the ecology and behavior of biological control agents is essential for their effective use in biocontrol and Integrated Pest Management (IPM) programs. There is a lack of information regarding the courtship and mating traits that are crucial for successful mating in biocontrol population of coccinellids. To expand our current understanding in this area, 2 coccinellid species commonly used for the biocontrol of soft-bodied insects, Cryptolaemus montrouzieri (Mulsant) and Propylea quatuordecimpunctata (Linnaeus) (Coleoptera: Coccinellidae), were studied. A quantitative analysis was performed to compare their courtship and mating displays. Key behavioral traits of the precopulatory, copulatory, and postcopulatory phases were investigated. The courtship and mating sequences of C. montrouzieri and P. quatuordecimpunctata were similar to each other. During the mating phase, the key displays were the opening of the elytrae and wings followed by body shaking in C. montrouzieri and leg tapping followed by body shaking in P. quatuordecimpunctata. The mating success of both species was not correlated with any courtship display, such as antennal tapping. Only in C. montrouzieri mounting attempt showed a higher frequency from the backside without affecting male mating success. This research adds baseline knowledge about the courtship and mating behavior of the biocontrol population of coccinellids, contributing to the identification of potentially useful benchmarks (e.g., body shaking, leg tapping) for monitoring prolonged mass-rearing processes, thus reducing mating failures.

2.
Environ Sci Pollut Res Int ; 31(31): 43865-43873, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38913260

RESUMO

Lobesia botrana (Lepidoptera: Tortricidae) and Cryptoblabes gnidiella (Lepidoptera: Pyralidae) represent a threat to wine production in Mediterranean countries. In recent years, the development of new formulations promoted the spread of pheromone-based mating disruption (MD) as an effective tool for the management of several insect pests in different agricultural contexts. In this study, we investigated the efficacy of an experimental dispenser designed for simultaneous MD of these two pests. The biodegradable double-tube dispenser (Isonet® L CG-BIOX235) was tested for two years in two Italian wine-growing sites, the first in Apulia (Southern Italy), and the second in Tuscany (Central Italy). Isonet® L CG-BIOX235 efficacy was evaluated by testing different doses (i.e., 300, 400, and 500 dispensers/ha), on different varieties (i.e., Aglianico, Syrah, and Viognier), and comparing it with an untreated control. The MD performed using this dispenser significantly reduced the infestation of both L. botrana (i.e., percentage of infested bunches and number of nests per bunch) and C. gnidiella compared to the untreated control, although the occurrence of the latter fluctuated throughout the two-year trials. Overall, although our results underline the possibility of combining the pheromones of the two pests in a single dispenser for their simultaneous MD, they also highlight the need for further studies on some aspects of C. gnidiella biology and consequently improve the MD efficacy against this species.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Vitis , Itália , Comportamento Sexual Animal/efeitos dos fármacos , Controle Biológico de Vetores/métodos , Lobesia botrana
3.
Insects ; 14(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36975955

RESUMO

Despite the great amount of information on the European Grapevine Moth (EGVM), Lobesia botrana (Lepidoptera: Tortricidae), and the effective strategies available for its management, this moth remains the main key pest damaging grapevines in the Mediterranean and Central Europe wine-growing areas. Synthesizing and manipulating its sex pheromone components fostered the development of new dispensers to boost the effectiveness and sustainability of mating disruption (MD) programs. Recent MD research has highlighted that the effectiveness of aerosol emitters is comparable to that of passive dispensers when applied in large, uniform sites such as Spanish vineyards. However, aerosol emitters that are equally effective in geographical areas characterized by small-sized vineyards, typical of many Italian regions, have not received enough research attention. To face this challenge, herein the experimental aerosol emitter (product code: Isonet® L MISTERX843) was tested at three different application rates (i.e., 2, 3 and 4 units/ha) in three study sites, two in Tuscany (Central Italy in 2017 and 2018) and one in Emilia-Romagna (Northern Italy in 2017), respectively, for a total of five trials. To assess the efficacy of this novel MD aerosol emitter, three different application densities were compared with an untreated control and two grower's standards. The latter were represented by passive (Isonet® L TT) and active (Checkmate® Puffer® LB) release dispensers, already on the market for EGVM MD and applied at, respectively, 200-300 and 2.5-4 units/ha. MD carried out with Isonet® L MISTERX843 led to zero catches of males in the pheromone traps. They also allowed for a significant reduction in the number of infested flower clusters and bunches, as well as in the number of nests per flowers cluster/bunch, if compared to the untreated control. As a general trend, MD effectiveness was fully comparable, or even better, if compared to the grower's standard. In conclusion, our research pointed out that the Isonet® L MISTERX843 can allow for effective EGVM management in small-sized Italian vineyards. Lastly, our economic evaluation showed that the MD whole cost per hectare using active or passive release devices was comparable.

4.
Environ Sci Pollut Res Int ; 30(19): 56207-56223, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36917375

RESUMO

The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemical adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi (AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) inoculation as well as the role of a major insect pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbuscules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning.


Assuntos
Micorrizas , Animais , Micorrizas/fisiologia , Lactuca , Raios Ultravioleta , Raízes de Plantas/metabolismo , Spodoptera , Folhas de Planta/química
5.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36558962

RESUMO

This work aimed to evaluate the chemical composition, insecticidal and acaricidal potential of the essential oil (EO) obtained from the resurrection plant Myrothamnus moschatus (Baill.) Baill. (Myrothamnaceae) from Madagascar. The EO bioactivity was evaluated against selected arthropod pests and vectors of agricultural and public health relevance. The most abundant volatile compounds were trans-pinocarveol (37.7 ± 4.2%) and pinocarvone (20.8 ± 3.1%), similar to the EO of the chemotype collected from the same region. Lethal concentrations (LC50) or doses (LD50) from acute toxicity tests were estimated for Musca domestica (L.) adults at 22.7 µg adult-1, for Spodoptera littoralis (Boisduval) larvae at 35.6 µg larva-1, for Culex quinquefasciatus (Say) at 43.6 µg mL-1, for adults of Metopolophium dirhodum (Walker) at 2.4 mL L-1, and for adults of Tetranychus urticae (Koch) at 1.2 mL L-1. The good insecticidal and acaricidal activities determined in this work may open a new perspective on the use of this plant as a source of botanical insecticide ingredients. The exploitation of this species could also be important for the African economy, helping local farmers cultivating this plant.

6.
Insects ; 13(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35886803

RESUMO

The European grapevine moth (EGVM), Lobesia botrana (Lepidoptera: Tortricidae), is one of the major concerns for vineyard managers in the Mediterranean area. It is a polyphagous moth, which develops on a wide variety of host plants, among which the spurge flax, Daphne gnidium (Thymelaeaceae), very likely represents its originary wild host plant. In this study, we investigated the parasitoid complex of L. botrana feeding on D. gnidium during a three-year sampling in a natural reserve in Tuscany, Italy, where this plant is extremely abundant while the grapevine is absent. A total of 24 species of parasitoids were obtained from eggs, larvae, and pupae of EGVM, belonging to 6 families of Hymenoptera and a family of Diptera. The ichneumonid wasp Campoplex capitator was the most abundant larval parasitoid. Four species of the genus Trichogramma were obtained from parasitized eggs during the first year of sampling, with a peak in the parasitisation during the EGVM 3rd generation. Some of the main EGVM parasitoids on spurge flax were also observed in vineyards, although a certain degree of redundancy was observed in the wild, due to several less frequent "satellite" species exploiting the same host. Overall, this research sheds light on the parasitoid community and dynamics of this important moth pest in a grapevine-free natural ecosystem, discussing the possible role of natural areas as ecological reservoirs of pest natural enemies.

7.
Plants (Basel) ; 11(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956490

RESUMO

Patagonia is a geographical area characterized by a wide plant biodiversity. Several native plant species are traditionally used in medicine by the local population and demonstrated to be sources of biologically active compounds. Due to the massive need for green and sustainable pesticides, this study was conducted to evaluate the insecticidal activity of essential oils (EOs) from understudied plants growing in this propitious area. Ciprés (Pilgerodendron uviferum), tepa (Laureliopsis philippiana), canelo (Drimys winteri), and paramela (Adesmia boronioides) EOs were extracted through steam distillation, and their compositions were analyzed through GC−MS analysis. EO contact toxicity against Musca domestica L., Spodoptera littoralis (Boisd.), and Culex quinquefasciatus Say was then evaluated. As a general trend, EOs performed better on housefly males over females. Ciprés EO showed the highest insecticidal efficacy. The LD50(90) values were 68.6 (183.7) and 11.3 (75.1) µg adult−1 on housefly females and males, respectively. All EOs were effective against S. littoralis larvae; LD50 values were 33.2−66.7 µg larva−1, and tepa EO was the most effective in terms of LD90 (i.e., <100 µg larva−1). Canelo, tepa, and paramela EOs were highly effective on C. quinquefasciatus larvae, with LC50 values < 100 µL L−1. Again, tepa EO achieved LD90 < 100 µL L−1. This EO was characterized by safrole (43.1%), linalool (27.9%), and methyl eugenol (6.9%) as major constituents. Overall, Patagonian native plant EOs can represent a valid resource for local stakeholders, to develop effective insecticides for pest and vector management, pending a proper focus on their formulation and nontarget effects.

8.
Plants (Basel) ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145754

RESUMO

Recently, spices have attracted the attention of scientists and agrochemical companies for their potential as insecticidal and acaricidal agents, and even as repellents to replace synthetic compounds that are labeled with detrimental impacts on environment and human and animal health. In this framework, the aim of this study was to evaluate the insecticidal potential of the essential oils (EOs) obtained from three Cameroonian aromatic plants, namely Monodora myristica (Gaertn.) Dunal, Xylopia aethiopica (Dunal) A. Rich., and Aframomum citratum (J. Pereira) K. Schum. They were produced by hydrodistillation, with yields of 3.84, 4.89, and 0.85%, respectively. The chemical composition was evaluated by GC-MS analysis. The EOs and their major constituents (i.e., geraniol, sabinene, α-pinene, p-cymene, α-phellandrene, and ß-pinene) were tested against the polyphagous moth pest, i.e., Spodoptera littoralis (Boisd.), the common housefly, Musca domestica L., and the filariasis and arbovirus mosquito vector, Culex quinquefasciatus Say. Our results showed that M. myristica and X. aethiopica EOs were the most effective against M. domestica adults, being effective on both males (22.1 µg adult-1) and females (LD50: 29.1 µg adult-1). The M. myristica EO and geraniol showed the highest toxicity on S. littoralis, with LD50(90) values of 29.3 (123.5) and 25.3 (83.2) µg larva-1, respectively. Last, the EOs from M. myristica and X. aethiopica, as well as the major constituents p-cymene and α-phellandrene, were the most toxic against C. quinquefasciatus larvae. The selected EOs may potentially lead to the production of cheap and effective botanical insecticides for African smallholders, although the development of effective formulations, a safety evaluation, and an in-depth study of their efficacy on different insect species are needed.

9.
Insects ; 14(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36661948

RESUMO

Arbuscular mycorrhizal fungi (AMF) and ultraviolet-B radiation (UV-B) play important roles in plant-insect interactions by altering plant physiology and histology. We hypothesized that UV-B-induced oxidative stress was mitigated by AMF symbiosis. In this study, we conducted a multifactorial experiment to explore lettuce plant response to AMF inoculation and UV-B exposure (0.4 W m-2; 16 h d-1; 2 weeks), either together or individually, as well as the interaction with the polyphagous insect pest Myzus persicae (Sulzer). Lettuce plants subjected to UV-B radiation showed an increase in callose and oxidative stress indicators, as well as a decrease in stomatal density. Mycorrhizal colonization cancelled out the effect of UV-B on stomatal density, while the symbiosis was not affected by UV-B treatment. The plant volatile emission was significantly altered by UV-B treatment. Specifically, the non-terpene 1-undecene abundance (+M/+UVB: 48.0 ± 7.78%; -M/+UVB: 56.6 ± 14.90%) was increased, whereas the content of the non-terpene aldehydes decanal (+M/+UVB: 8.50 ± 3.90%; -M/+UVB: 8.0 ± 4.87%) and undecanal (+M/+UVB: 2.1 ± 0.65%; -M/+UVB: 1.20 ± 1.18%) and the sesquiterpene hydrocarbons (+M/+UVB: 18.0 ± 9.62 %; -M/+UVB: 19.2 ± 5.90%) was decreased. Mycorrhization, on the other hand, had no significant effect on the plant volatilome, regardless of UV-B treatment. Aphid population was unaffected by any of the treatments, implying a neutral plant response. Overall, this study provides new insights about the interactions among plants, UV-B, and AMF, outlining their limited impact on a polyphagous insect pest.

10.
Insects ; 12(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34821781

RESUMO

Entomological approaches currently available for assessing host parasitization require dissection, polymerase chain reaction (PCR), or waiting for adult emergence. The first two methods are relatively fast but destructive, whereas the third one allows the emergence of the parasitoid but it is time consuming. In this framework, new diagnostic imaging tools may contribute to solve the lack of an accurate, rapid, and non-invasive approach to evaluate the parasitization of soft-bodied insects by their endoparasitoids. In this study, ultra-high frequency ultrasound (UHFUS) technology, which is currently used in medical and preclinical fields, was adopted to assess the parasitization of the invasive polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), testing 2nd and 3rd instar larvae. Parasitization assays were carried out with the solitary koinobiont endophagous parasitoid Psyttalia concolor (Hymenoptera: Braconidae: Opiinae). The efficacy of UHFUS-based echoentomography was compared with the classical method of dissecting the larval host under a stereomicroscope. Our results showed that the UHFUS diagnostic capability was statistically comparable with that of dissection, both on C. capitata 2nd and 3rd larvae. Overall, UHFUS-based echoentomography may be further considered as a fast, non-invasive, and effective approach to evaluate the parasitoid's ability to successfully oviposit in soft-bodied hosts.

11.
Insects ; 12(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803668

RESUMO

The Comstock mealybug, Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a primary pest of orchards in the North and Northwest of China. This pest appeared recently in Europe, including Italy, where it is infesting mainly vineyards as well as apple and pear orchards. The present study investigated the efficacy of Anagyrus vladimiri, a known biological control agent (BCA) of Planococcus ficus, on P. comstocki to evaluate a potential use for the management of this new pest. No-choice tests were conducted to quantify the parasitoid behavior against P. ficus and P. comstocki. The parasitoid successfully parasitized both species (parasitization rate: 51% and 67% on P. comstocki and P. ficus, respectively). The A.vladimiri developmental time (19.67 ± 1.12 vs. 19.70 ± 1.07 days), sex ratio (1.16 ± 1.12 vs. 1.58 ± 1.07) and hind tibia length of the progeny showed no differences when P. comstocki and P. ficus, respectively, were exploited as hosts. Two-choice tests, conducted by providing the parasitoid with a mixed population of P. ficus and P. comstocki, showed no host preference for either of the two mealybug species (23 vs. 27 first choices on P. comstocki and P. ficus, respectively). The parasitization rate (61.5% and 64.5% in P. comstocki and P. ficus, respectively) did not differ between the two hosts. Overall, our study adds basic knowledge on parasitoid behavior and host preferences and confirms the use of this economically important encyrtid species as an effective BCA against the invasive Comstock mealybug.

12.
Insects ; 12(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925163

RESUMO

The demand for a reduced use of pesticides in agriculture requires the development of specific strategies for managing arthropod pests. Among eco-friendly pest control tools, pheromone-based mating disruption (MD) is promising for controlling several key insect pests of economic importance, including many lepidopteran species. In our study, we evaluated an MD approach for managing the honeydew moth (HM), Cryptoblabes gnidiella, an emerging threat for the grapevine in the Mediterranean basin. The trials were carried out in two study sites, located in Tuscany (central Italy, years 2017-2019) and Apulia (southern Italy, years 2016 and 2018-2019), and by applying MD dispensers only in April, in April and July, and only in July. To evaluate the effects of MD, infested bunches (%), damaged area (%) per bunch, and number of living larvae per bunch were compared among plots covered with MD dispensers, insecticide-treated plots (Apulia only), and untreated control plots. Male flights were monitored using pheromone-baited sticky traps. Except for the sampling carried out in Tuscany in 2018, where HM infestation level was very low, a significant difference was recorded between MD and control plots, both in terms of HM damage caused to ripening grapes and/or number of living larvae per bunch. Overall, our study highlighted that MD, irrespective of the application timing, significantly reduced HM damage; the levels of control achieved here were similar to those obtained with the application of insecticides (no MD). However, MD used as stand-alone strategy was not able to provide complete pest control, which may instead be pursued by growers with an IPM approach.

13.
Insect Sci ; 27(6): 1298-1310, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31789469

RESUMO

Campoplex capitator is an ichneumonid parasitoid with a narrow host range, comprising grapevine moth pests. Despite being considered one of the possible candidates for biocontrol of Lobesia botrana, knowledge about its biology is limited and mass-rearing for commercial purposes is still lacking. This research provides a quantitative analysis of the C. capitator courtship and mating behavior. C. capitator mating sequence was analyzed by high-speed video recordings. Main behavioral parameters, with special reference to male wing fanning and antennal tapping, were quantified and linked with mating success. Furthermore, we analyzed the occurrence of population-level behavioral asymmetries during C. capitator sexual interactions and their impact on male success. Results showed that male wing fanning was crucial to successfully approach the female. Males achieving higher mating success performed wing-fanning at higher frequencies over unsuccessful ones. After wing fanning, most of males palpated the female's body with their antennae, before attempting copulation. The overall mating success was >70%, with a rather long copula duration (254.76 ± 14.21 s). Male wing-fanning was lateralized on the left at population level, while antennal tapping displays were right-biased. Side-biased male displays do not differ in terms of frequency and duration of their main features. This research adds basic knowledge to the C. capitator behavioral ecology. Since rearing protocols for C. capitator are being developed, male wing fanning frequency may represent a useful benchmark for monitoring mate quality over time, tackling mating success reductions due to prolonged mass-rearing.


Assuntos
Corte , Comportamento Sexual Animal , Vespas/fisiologia , Asas de Animais/fisiologia , Animais , Copulação , Masculino , Gravação em Vídeo
14.
Nanomaterials (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961890

RESUMO

The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography-mass spectrometry (GC-MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest.

15.
Insects ; 10(9)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491887

RESUMO

The citrophilous mealybug Pseudococcus calceolariae (Maskell) (Hemiptera, Pseudococcidae) is a primary pest of various crops, including grapevines. The use of insecticides against this species is difficult in most cases because its life cycle includes an extended duration of eggs, juveniles, and adults under the bark and on the roots. Pheromone-based control strategies can present new eco-friendly opportunities to manage this species, as in the case of Planococcus ficus (Signoret) and Planococcus citri (Risso). With this aim it is critical to understand behavioral aspects that may influence pheromone-based control strategies. Herein, the capability of males to fertilize multiple females was investigated, trying to understand whether this behavior could negatively impact the efficacy of mass trapping, mating disruption, or the lure and kill technique. Results showed that a P. calceolariae male can successfully mate and fertilize up to 13 females. The copulation time in subsequent mating events and the time between copulations did not change over time but the number of matings per day significantly decreased. In a further experiment, we investigated the mate location strategy of P. calceolariae males, testing the attractiveness of different loadings of sex pheromone on males in a flight tunnel. Males constantly exposed to 16 rubber septa loaded with the sex pheromone showed a significant decrease in female detection at 1 and 30 µg loadings (0.18 and 0.74 visits per female for each visit per septum, respectively), whereas in the control about 9.2-fold more of the released males successfully detected the female in the center of the array of 16 septa without pheromone. Male location of females in the control (45%) was significantly higher than in the arrays with surrounding pheromone (5% and 20% at 1 and 30 µg loadings, respectively). Mating only occurred in the control arrays (45%). This study represents a useful first step to developing pheromone-based strategies for the control of citrophilous mealybugs.

16.
Environ Sci Pollut Res Int ; 26(11): 10708-10718, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30778939

RESUMO

The vine mealybug (VMB), Planococcus ficus (Hemiptera: Pseudococcidae), is a key insect pest of vineyards. While pheromone-based mating disruption (MD) has been successfully tested against a wide range of insect pests, knowledge about its efficacy against key mealybug species, such as P. ficus, is scarce. In this study, a novel MD product, Isonet® PF, was evaluated by testing 300, 400, and 500 dispensers/ha at four study sites located in Northern (Veneto) and Southern (Sicily) Italy. Experiments were carried out over 2 years by monitoring the mealybug populations in wine grape and table grape vineyards managed with and without the application of MD. Pheromone dispensers were periodically collected during the grapevine-growing season, extracted, and analyzed by GC-MS, to determine their pheromone content and the release in mg/ha/day. The results showed that use of the MD dispenser Isonet® PF reduced the percentage of VMB-infested bunches and the number of VMB specimens per bunch compared with the untreated controls. This was recorded over 2 years at all experimental sites. Differences in the incidence of infested bunches among the three tested rates of Isonet® PF were not detected. Overall, the results presented here contribute to optimizing the sex pheromone dosage used in MD control programs against VMB allowing a reduction of broad-spectrum insecticides currently employed to manage this important pest.


Assuntos
Hemípteros/fisiologia , Controle de Insetos/métodos , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Feminino , Hemípteros/efeitos dos fármacos , Masculino , Doenças das Plantas/parasitologia , Reprodução/efeitos dos fármacos , Estações do Ano , Sicília , Vitis/parasitologia
17.
Zookeys ; (772): 47-95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018508

RESUMO

In this second review of the parasitoids recorded on Lobesia botrana (EGVM) in Italy, an updated list and summary of the information available on 14 taxa of Ichneumonidae belonging to the subfamilies Anomaloninae and Campopleginae are provided. For each taxon, geographic distributions, host ranges, ecological role in viticulture and/or in other crops, and taxonomy are provided and discussed. For the most interesting species, tables summarizing the parasitization rates recorded in the field on EGVM or other lepidopteran pests are given. Identification mistakes and wrong synonymies that have generated great confusion and often made geographic distributions and host ranges unreliable are highlighted. A list of four Anomaloninae and 27 Campopleginae recorded on EGVM in Europe is also provided. Among the species examined, Campoplex capitator Aubert is the only potential candidate for biological control of EGVM.

18.
Environ Sci Pollut Res Int ; 25(10): 9426-9442, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29352393

RESUMO

The development of environmentally sustainable control strategies to fight insect pests is a key challenge nowadays. Pheromone-mediated mating disruption (MD) is based on the release of synthetic sex attractants into a crop, interfering with mate finding of a given pest species. However, a limited number of research items have been published on the optimization of MD strategies against the European grapevine moth, Lobesia botrana, as well as on the use of biodegradable dispensers to reduce waste production in vineyards, despite the high economic importance of this pest. Therefore, the present study evaluated the efficacy of the MD products Isonet® L TT and the biodegradable Isonet® L TT BIO, applied at various densities, in reducing L. botrana damage on grapevine in comparison to an untreated control and the reference MD product Isonet® L. Experiments were conducted in three different areas of grapevine cultivation, located in Central and Northern Italy, over three different years. Our MD approach allowed a reliable control of the three generations of L. botrana during the whole grape growing season, leading to a significant reduction in the infested flower clusters and bunches, as well as in the number of nests per flower cluster and bunch, if compared to the untreated control. The performances of Isonet® L TT BIO, Isonet® LTT, and Isonet® L did not differ in terms of infested flower clusters/bunches, as well as nests per flower cluster/bunch. This was confirmed in all experimental sites over 3 years of field experiments. Overall, the present research provides useful information for the optimization of MD programs against L. botrana, highlighting the interesting potential of biodegradable pheromone dispensers that can be easily applied at low densities in vineyards, reducing the use of chemical pesticides to control moth pests.


Assuntos
Controle Biológico de Vetores , Feromônios/química , Vitis/crescimento & desenvolvimento , Animais , Cor , Insetos , Itália , Mariposas , Reprodução , Estações do Ano , Atrativos Sexuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa