Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; : 1-10, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549785

RESUMO

The segregation of reactive elements (REs) along thermally grown oxide (TGO) grain boundaries has been associated to slower oxide growth kinetics and improved creep properties. However, the incorporation and diffusion of these elements into the TGO during oxidation of Ni alloys remains an open question. In this work, electron backscatter diffraction in transmission mode (t-EBSD) was used to investigate the microstructure of TGO within the thermal barrier coating on a Ni-based superalloy, and atom probe tomography (APT) was used to quantify the segregation behavior of REs to α-Al2O3 grain boundaries. Integrating the two techniques enables a higher level of site-specific analysis compared to the routine focused ion beam lift-out sample preparation method without t-EBSD. Needle-shaped APT specimens readily meet the thickness criterion for electron diffraction analysis. Transmission EBSD provides an immediate feedback on grain orientation and grain boundary location within the APT specimens to help target grain boundaries in the TGO. Segregation behavior of REs is discussed in terms of the grain boundary character and relative location in TGO.

3.
Microsc Microanal ; 22(3): 583-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27329309

RESUMO

There are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50° misorientation and trace element segregation to the grain boundary.

4.
J Am Chem Soc ; 135(17): 6669-76, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23544768

RESUMO

Prior investigations into the synthesis of colloidal CdSe nanocrystals with a wurtzite crystal structure (wz-CdSe) have given rise to well-developed methods for producing particles with anisotropic shapes such as rods, tetrapods, and wires; however, the synthesis of other shapes has proved challenging. Here we present a seed-mediated approach for the growth of colloidal, shape-controlled wz-CdSe nanoparticles with previously unobserved morphologies. The synthesis, which makes use of small (2-3 nm) wz-CdSe nanocrystals as nucleation sites for subsequent growth, can be tuned to selectively yield colloidal wz-CdSe nanocubes and hexagonal nanoplatelets in addition to nanorod and bullet-shaped particles. We thoroughly characterize the morphology and crystal structures of these new shapes, as well as discuss possible growth mechanisms in the context of control over surface chemistry and the nucleation stage.

5.
Micron ; 95: 42-50, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28192763

RESUMO

Transmission electron backscatter diffraction (t-EBSD) has become a routine technique for crystal orientation mapping when ultrahigh resolution is needed and has demonstrated advantages in the characterization of nanoscale and micron-sized samples (Babinsky et al., 2015). In this work, we use experimental measurements and simulations to compare the resolution of the transmission and conventional reflection EBSD techniques across a range of sample volumes and characterization conditions. Monte Carlo simulations of electron trajectories provide the opportunity to estimate beam size and effective resolution, as well as electron flux, as a function of sample thickness or incident beam energy in t-EBSD. Increasing incident beam energy is shown to negatively impact beam diameter in some cases, and the effect of thinning a sample for conventional EBSD is shown to improve characterization resolution but dramatically decrease the number of high-loss electrons backscattered to the detector. In addition to considering spatial resolution when implementing EBSD techniques, it is found that maintaining a high yield of diffracted electrons to the detector is also of critical importance, which is supported by experimental results. Consequently, this work provides key insights into the nature of electron scattering and probe volume for the practical implementation of both transmission and reflection EBSD techniques.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa