Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunother ; 46(4): 132-144, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36826388

RESUMO

Adoptive cell therapy with T cells expressing affinity-enhanced T-cell receptors (TCRs) is a promising treatment for solid tumors. Efforts are ongoing to further engineer these T cells to increase the depth and durability of clinical responses and broaden efficacy toward additional indications. In the present study, we investigated one such approach: T cells were transduced with a lentiviral vector to coexpress an affinity-enhanced HLA class I-restricted TCR directed against MAGE-A4 alongside a CD8α coreceptor. We hypothesized that this approach would enhance CD4 + T-cell helper and effector functions, possibly leading to a more potent antitumor response. Activation of transduced CD4 + T cells was measured by detecting CD40 ligand expression on the surface and cytokine and chemokine secretion from CD4 + T cells and dendritic cells cultured with melanoma-associated antigen A4 + tumor cells. In addition, T-cell cytotoxic activity against 3-dimensional tumor spheroids was measured. Our data demonstrated that CD4 + T cells coexpressing the TCR and CD8α coreceptor displayed enhanced responses, including CD40 ligand expression, interferon-gamma secretion, and cytotoxic activity, along with improved dendritic cell activation. Therefore, our study supports the addition of the CD8α coreceptor to HLA class I-restricted TCR-engineered T cells to enhance CD4 + T-cell functions, which may potentially improve the depth and durability of antitumor responses in patients.


Assuntos
Antineoplásicos , Ligante de CD40 , Humanos , Linfócitos T CD4-Positivos , Linfócitos T Auxiliares-Indutores , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Front Nutr ; 8: 667203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458299

RESUMO

Background: Vitamin D upregulates anti-inflammatory and antimicrobial pathways that promote respiratory health. Vitamin D synthesis is initiated following skin exposure to sunlight, however nutritional supplementation can be required to address deficiency, for example during the winter months or due to cultural constraints. We recently reported that 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment induced alpha-1 antitrypsin (AAT) expression in CD4+, but not CD8+ T cells, with evidence supporting an immunoregulatory role. Research Question: To understand the relationship between vitamin D, lung AAT levels and T lymphocytes further we investigated whether TGF-ß is required as a co-factor for 1,25(OH)2D3-induced upregulation of AAT by vitamin D in CD8+ T cells in vitro and correlated circulating vitamin D levels with lung AAT levels in vivo. Results: 1,25(OH)2D3 in combination with TGF-ß1 increased AAT expression by CD8+ T cells, as well as VDR and RXRα gene expression, which may partly explain the requirement for TGF-ß. CD4+ T cells may also require autocrine stimulation with TGF-ß as a co-factor since 1,25(OH)2D3 was associated with increased TGF-ß bioactivity and neutralisation of TGF-ß partially abrogated 1,25(OH)2D3-induced SERPINA1 gene expression. Neither CD4+ nor CD8+ T cells responded to the circulating vitamin D precursor, 25-hydroxyvitamin D3 for induction of SERPINA1, suggesting that local generation of 1,25(OH)2D3 is required. Transcriptional gene profiling studies previously demonstrated that human bronchial epithelial cells rapidly increased TGF-ß2 gene expression in response to 1,25(OH)2D3. Here, human epithelial cells responded to precursor 25(OH)D3 to increase bioactive TGF-ß synthesis. CD8+ T cells responded comparably to TGF-ß1 and TGF-ß2 to increase 1,25(OH)2D3-induced AAT. However, CD8+ T cells from adults with AAT-deficiency, homozygous for the Z allele of SERPINA1, were unable to mount this response. AAT levels in the airways of children with asthma and controls correlated with circulating 25(OH)D3. Conclusions: Vitamin D increases AAT expression in human T cells and this response is impaired in T cells from individuals homozygous for the Z allele of SERPINA1 in a clinic population. Furthermore, a correlation between circulating vitamin D and airway AAT is reported. We propose that vitamin D-induced AAT contributes to local immunomodulation and airway health effects previously attributed to vitamin D.

3.
J Steroid Biochem Mol Biol ; 189: 1-9, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690074

RESUMO

Studies to identify novel immune-regulatory functions of active vitamin D (1,25(OH)2D3) in human CD4+ T cells revealed that 1,25(OH)2D3 potently induced expression of the gene SERPINA1, encoding the anti-protease α-1-antitrypsin. We confirmed α-1-antitrypsin protein expression by 1,25(OH)2D3-treated CD4+ T cells, but not in CD8+ T cells or monocytes. α-1-Antitrypsin promotes anti-inflammatory IL-10 synthesis in other immune cell populations. We therefore investigated its immune-regulatory effects in CD4+ T cells. Plasma-derived α-1-antitrypsin drove IL-10 synthesis by CD4+ T cells, which was not dependent on anti-protease activity, but appeared to require a serum-binding factor, since this could not be achieved with recombinant protein. α-1-Antitrypsin is reported to bind complement components, which regulate T cell function. A role for this interaction was therefore probed. Plasma-derived, but not recombinant α-1-antitrypsin contained C3a. Surface Plasmon Resonance and Microscale Thermophoresis demonstrated α-1-antitrypsin binding to C3a. Addition of C3a to CD4+ T cells cultured with recombinant α-1-antitrypsin restored induction of IL-10, whereas neutralisation of C3a abrogated IL-10 induced by plasma-derived α-1-antitrypsin. To interrogate an endogenous role for the α-1-antitrypsin-C3a axis in 1,25(OH)2D3-driven CD4+ T cell IL-10 synthesis, we treated cells from healthy or α-1-antitrypsin-deficient individuals (which transcribe SERPINA1 but do not secrete protein) with 1,25(OH)2D3. A significant correlation was identified between SERPINA1 and IL10 gene expression in healthy donor CD4+ T cells, which was absent in cells from α-1-antitrypsin-deficient individuals. Therefore, α-1-antitrypsin is required for 1,25(OH)2D3-induced IL-10 expression in CD4+ T cells, interacting with C3a to drive IL-10 expression.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Calcitriol/farmacologia , Interleucina-10/imunologia , Vitaminas/farmacologia , alfa 1-Antitripsina/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Humanos , Fatores Imunológicos/farmacologia
4.
Eur J Pharmacol ; 704(1-3): 49-57, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23454522

RESUMO

Loss of function mutations in the two key proteins which constitute Calcium-Release Activated Calcium (CRAC) channels demonstrate the critical role of this ion channel in immune cell function. The aim of this study was to demonstrate that inhibition of immune cell activation could be achieved with highly selective inhibitors of CRAC channels in vitro using cell preparations from human, rat, mouse and guinea-pig. Two selective small molecule blockers of CRAC channels; GSK-5498A and GSK-7975A were tested to demonstrate their ability to inhibit mediator release from mast cells, and pro-inflammatory cytokine release from T-cells in a variety of species. Both GSK-5498A and GSK-7975A completely inhibited calcium influx through CRAC channels. This led to inhibition of the release of mast cell mediators and T-cell cytokines from multiple human and rat preparations. Mast cells from guinea-pig and mouse preparations were not inhibited by GSK-5498A or GSK-7975A; however cytokine release was fully blocked from T-cells in a mouse preparation. GSK-5498A and GSK-7975A confirm the critical role of CRAC channels in human mast cell and T-cell function, and that inhibition can be achieved in vitro. The rat displays a similar pharmacology to human, promoting this species for future in vivo research with this series of molecules. Together these observations provide a critical forward step in the identification of CRAC blockers suitable for clinical development in the treatment of inflammatory disorders.


Assuntos
Benzamidas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Mastócitos/efeitos dos fármacos , Pirazóis/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Cobaias , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Ratos , Baço/citologia , Linfócitos T/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa