Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 63(8): 1016-1025, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546289

RESUMO

Kinetic parameters are reported for glycerol 3-phosphate dehydrogenase (GPDH)-catalyzed hydride transfer from the whole substrate glycerol 3-phosphate (G3P) or truncated substrate ethylene glycol (EtG) to NAD, and for activation of the hydride transfer reaction of EtG by phosphite dianion. These kinetic parameters were combined with parameters for enzyme-catalyzed hydride transfer in the microscopic reverse direction to give the reaction equilibrium constants Keq. Hydride transfer from G3P is favored in comparison to EtG because the carbonyl product of the former reaction is stabilized by hyperconjugative electron donation from the -CH2R keto substituent. The kinetic data show that the phosphite dianion provides the same 7.6 ± 0.1 kcal/mol stabilization of the transition states for enzyme-catalyzed reactions in the forward [reduction of NAD by EtG] and reverse [oxidation of NADH by glycolaldehyde] directions. The experimental evidence that supports a role for phosphite dianion in stabilizing the active closed form of the GPDH (EC) relative to the ca. 6 kcal/mol more unstable open form (EO) is summarized.


Assuntos
Glicerolfosfato Desidrogenase , Glicerofosfatos , Fosfitos , Glicerolfosfato Desidrogenase/química , NAD/metabolismo , Catálise , Cinética
2.
Biochemistry ; 62(20): 2916-2927, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37768194

RESUMO

The P168 and I172 side chains sit at the heart of the active site of triosephosphate isomerase (TIM) and play important roles in the catalysis of the isomerization reaction. The phosphodianion of substrate glyceraldehyde 3-phosphate (GAP) drives a conformational change at the TIM that creates a steric interaction with the P168 side chain that is relieved by the movement of P168 that carries the basic E167 side chain into a clamp that consists of the hydrophobic I172 and L232 side chains. The P168A/I172A substitution at TIM from Trypanosoma brucei brucei (TbbTIM) causes a large 120,000-fold decrease in kcat for isomerization of GAP that eliminates most of the difference in the reactivity of TIM compared to the small amine base quinuclidinone for deprotonation of catalyst-bound GAP. The I172A substitution causes a > 2-unit decrease in the pKa of the E167 carboxylic acid in a complex to the intermediate analog PGA, but the P168A substitution at the I172A variant has no further effect on this pKa. The P168A/I172A substitutions cause a 5-fold decrease in Km for the isomerization of GAP from a 0.9 kcal/mol stabilization of the substrate Michaelis complexes. The results show that the P168 and I172 side chains play a dual role in destabilizing the ground-state Michaelis complex to GAP and in promoting stabilization of the transition state for substrate isomerization. This is consistent with an important role for these side chains in an induced fit reaction mechanism [Richard, J. P. (2022) Enabling Role of Ligand-Driven Conformational Changes in Enzyme Evolution. Biochemistry 61, 1533-1542].


Assuntos
Gliceraldeído 3-Fosfato , Triose-Fosfato Isomerase , Triose-Fosfato Isomerase/química , Domínio Catalítico , Gliceraldeído 3-Fosfato/química , Catálise
3.
Biochemistry ; 62(15): 2314-2324, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463347

RESUMO

The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates Candida boidinii formate dehydrogenase (CbFDH) for catalysis of hydride transfer from formate to NAD+. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for CbFDH-catalyzed hydride transfer from formate to NAD+. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between CbFDH and NAD+ (KNAD = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD+ activate CbFDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD+ cofactor that holds CbFDH in the catalytically active closed conformation.


Assuntos
Formiato Desidrogenases , NAD , NAD/metabolismo , Formiato Desidrogenases/metabolismo , Ribose , Catálise , Ânions , Fosfatos , Cinética
4.
Biochemistry ; 62(11): 1794-1806, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37162263

RESUMO

Four catalytic amino acids at triosephosphate isomerase (TIM) are highly conserved: N11, K13, H95, and E167. Asparagine 11 is the last of these to be characterized in mutagenesis studies. The ND2 side chain atom of N11 is hydrogen bonded to the O-1 hydroxyl of enzyme-bound dihydroxyacetone phosphate (DHAP), and it sits in an extended chain of hydrogen-bonded side chains that includes T75' from the second subunit. The N11A variants of wild-type TIM from Trypanosoma brucei brucei (TbbTIM) and Leishmania mexicana (LmTIM) undergo dissociation from the dimer to monomer under our assay conditions. Values of Kas = 8 × 103 and 1 × 106 M-1, respectively, were determined for the conversion of monomeric N11A TbbTIM and LmTIM into their homodimers. The N11A substitution at the variant of LmTIM previously stabilized by the E65Q substitution gives the N11A/E65Q variant that is stable to dissociation under our assay conditions. The X-ray crystal structure of N11A/E65Q LmTIM shows an active site that is essentially superimposable on that for wild-type TbbTIM, which also has a glutamine at position 65. A comparison of the kinetic parameters for E65Q LmTIM and N11A/E65Q LmTIM-catalyzed reactions of (R)-glyceraldehyde 3-phosphate (GAP) and (DHAP) shows that the N11A substitution results in a (13-14)-fold decrease in kcat/Km for substrate isomerization and a similar decrease in kcat for DHAP but only a 2-fold decrease in kcat for GAP.


Assuntos
Aminoácidos , Triose-Fosfato Isomerase , Triose-Fosfato Isomerase/química , Catálise , Hidrogênio
5.
Biochemistry ; 61(15): 1533-1542, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35829700

RESUMO

Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding. A seminal step in the development of modern enzyme catalysts was the evolution of enzymes that couple substrate binding to a conformational change. These include enzymes that function in glycolysis (triosephosphate isomerase), the biosynthesis of lipids (glycerol phosphate dehydrogenase), the hexose monophosphate shunt (6-phosphogluconate dehydrogenase), and the mevalonate pathway (isopentenyl diphosphate isomerase), catalyze the final step in the biosynthesis of pyrimidine nucleotides (orotidine monophosphate decarboxylase), and regulate the cellular levels of adenine nucleotides (adenylate kinase). The evolution of enzymes that undergo ligand-driven conformational changes to form active protein-substrate cages is proposed to proceed by selection of variants, in which the selected side chain substitutions destabilize a second protein conformer that shows compensating enhanced binding interactions with the substrate. The advantages inherent to enzymes that incorporate a conformational change into the catalytic cycle provide a strong driving force for the evolution of flexible protein folds such as the TIM barrel. The appearance of these folds represented a watershed event in enzyme evolution that enabled the rapid propagation of enzyme activities within enzyme superfamilies.


Assuntos
Orotidina-5'-Fosfato Descarboxilase , Triose-Fosfato Isomerase , Catálise , Glicerolfosfato Desidrogenase/química , Ligantes , Orotidina-5'-Fosfato Descarboxilase/química , Conformação Proteica , Triose-Fosfato Isomerase/química
6.
Biochemistry ; 61(10): 856-867, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35502876

RESUMO

The cationic K120 and K204 side chains lie close to the C-2 carbonyl group of substrate dihydroxyacetone phosphate (DHAP) at the active site of glycerol-3-phosphate dehydrogenase (GPDH), and the K120 side chain is also positioned to form a hydrogen bond to the C-1 hydroxyl of DHAP. The kinetic parameters for unactivated and phosphite dianion-activated GPDH-catalyzed reduction of glycolaldehyde and acetaldehyde (AcA) show that the transition state for the former reaction is stabilized by ca 5 kcal/mole by interactions of the C-1 hydroxyl group with the protein catalyst. The K120A and K204A substitutions at wild-type GPDH result in similar decreases in kcat, but Km is only affected by the K120A substitution. These results are consistent with 3 kcal/mol stabilizing interactions between the K120 or K204 side chains and a negative charge at the C-2 oxygen at the transition state for hydride transfer from NADH to DHAP. This stabilization resembles that observed at oxyanion holes for other enzymes. There is no detectable rescue of the K204A variant by ethylammonium cation (EtNH3+), compared with the efficient rescue of the K120A variant. This is consistent with a difference in the accessibility of the variant enzyme active sites to exogenous EtNH3+. The K120A/K204A substitutions cause a (6 × 106)-fold increase in the promiscuity of wild-type hlGPDH for catalysis of the reduction of AcA compared to DHAP. This may reflect conservation of the active site for an ancestral alcohol dehydrogenase, whose relative activity for catalysis of reduction of AcA increases with substitutions that reduce the activity for reduction of the specific substrate DHAP.


Assuntos
Glicerolfosfato Desidrogenase , Catálise , Domínio Catalítico , Fosfato de Di-Hidroxiacetona/química , Glicerolfosfato Desidrogenase/química , Cinética
7.
Biochemistry ; 61(23): 2766-2775, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36413937

RESUMO

The pressure to optimize the enzymatic rate acceleration for adenylate kinase (AK)-catalyzed phosphoryl transfer has led to the evolution of an induced-fit mechanism, where the binding energy from interactions between the protein and substrate adenosyl group is utilized to drive a protein conformational change that activates the enzyme for catalysis. The adenine group of adenosine contributes 11.8 kcal mol-1 to the total ≥14.7 kcal mol-1 adenosine stabilization of the transition state for AK-catalyzed phosphoryl transfer to AMP. The relative third-order rate constants for activation of adenylate kinase, by the C-5 truncated adenosine 1-(ß-d-erythrofuranosyl)adenine (EA), for catalysis of phosphoryl transfer from ATP to phosphite dianion (HP, kcat/KHPKAct = 260 M-2 s-1), fluorophosphate (47 M-2 s-1), and phosphate (9.6 M-2 s-1), show that substitution of -F for -H and of -OH for -H at HP results, respectively, in decreases in the reactivity of AK for catalysis of phosphoryl transfer due to polar and steric effects of the -F and -OH substituents. The addition of a 5'-CH2OH to the EA activator results in a 3.0 kcal mol-1 destabilization of the transition state for AK-activated phosphoryl transfer to HP due to a steric effect. This is smaller than the 8.3 kcal mol-1 steric effect of the 5'-CH2OH substituent at OMP on HP-activated OMPDC-catalyzed decarboxylation of 1-(ß-d-erythrofuranosyl)orotate. The 2'-OH ribosyl substituent shows significant interactions with the transition states for AK-catalyzed phosphoryl transfer from ATP to AMP and for adenosine-activated AK-catalyzed phosphoryl transfer from ATP to HP.


Assuntos
Adenilato Quinase , Orotidina-5'-Fosfato Descarboxilase , Orotidina-5'-Fosfato Descarboxilase/química , Adenilato Quinase/metabolismo , Nucleosídeos , Cinética , Domínio Catalítico , Catálise , Trifosfato de Adenosina , Adenosina , Adenina , Monofosfato de Adenosina
8.
Acc Chem Res ; 54(10): 2532-2542, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33939414

RESUMO

Linear free energy relationships (LFERs) for substituent effects on reactions that proceed through similar transition states provide insight into transition state structures. A classical approach to the analysis of LFERs showed that differences in the slopes of Brønsted correlations for addition of substituted alkyl alcohols to ring-substituted 1-phenylethyl carbocations and to the ß-galactopyranosyl carbocation intermediate of reactions catalyzed by ß-galactosidase provide evidence that the enzyme catalyst modifies the curvature of the energy surface at the saddle point for the transition state for nucleophile addition. We have worked to generalize the use of LFERs in the determination of enzyme mechanisms. The defining property of enzyme catalysts is their specificity for binding the transition state with a much higher affinity than the substrate. Triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase (OMPDC), and glycerol 3-phosphate dehydrogenase (GPDH) show effective catalysis of reactions of phosphorylated substrates and strong phosphite dianion activation of reactions of phosphodianion truncated substrates, with rate constants kcat/Km (M-1 s-1) and kcat/KdKHPi (M-2 s-1), respectively. Good linear logarithmic correlations, with a slope of 1.1, between these kinetic parameters determined for reactions catalyzed by five or more variant forms of each catalyst are observed, where the protein substitutions are mainly at side chains which function to stabilize the cage complex between the enzyme and substrate. This shows that the enzyme-catalyzed reactions of a whole substrate and substrate pieces proceed through transition states of similar structures. It provides support for the proposal that the dianion binding energy of whole phosphodianion substrates and of phosphite dianion is used to drive the conversion of these protein catalysts from flexible and entropically rich ground states to stiff and catalytically active Michaelis complexes that show the same activity toward catalysis of the reactions of whole and phosphodianion truncated substrates. There is a good linear correlation, with a slope of 0.73, between values of the dissociation constants log Ki for release of the transition state analog phosphoglycolate (PGA) trianion and log kcat/Km for isomerization of GAP for wild-type and variants of TIM. This correlation shows that the substituted amino acid side chains act to stabilize the complex between TIM and the PGA trianion and that ca. 70% of this stabilization is observed at the transition state for substrate deprotonation. The correlation provides evidence that these side chains function to enhance the basicity of the E165 side chain of TIM, which deprotonates the bound carbon acid substrate. There is a good linear correlation, with a slope of 0.74, between the values of ΔG‡ and ΔG° determined by electron valence bond (EVB) calculations to model deprotonation of dihydroxyacetone phosphate (DHAP) in water and when bound to wild-type and variant forms of TIM to form the enediolate reaction intermediate. This correlation provides evidence that the stabilizing interactions of the transition state for TIM-catalyzed deprotonation of DHAP are optimized by placement of amino acid side chains in positions that provide for the maximum stabilization of the charged reaction intermediate, relative to the neutral substrate.


Assuntos
Termodinâmica , Triose-Fosfato Isomerase/metabolismo , Humanos , Modelos Moleculares , Triose-Fosfato Isomerase/química
9.
Bioorg Chem ; 119: 105561, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34965488

RESUMO

Salicylate hydroxylase (NahG) has a single redox site in which FAD is reduced by NADH, the O2 is activated by the reduced flavin, and salicylate undergoes an oxidative decarboxylation by a C(4a)-hydroperoxyflavin intermediate to give catechol. We report experimental results that show the contribution of individual pieces of the FAD cofactor to the observed enzymatic activity for turnover of the whole cofactor. A comparison of the kinetic parameters and products for the NahG-catalyzed reactions of FMN and riboflavin cofactor fragments reveal that the adenosine monophosphate (AMP) and ribitol phosphate pieces of FAD act to anchor the flavin to the enzyme and to direct the partitioning of the C(4a)-hydroperoxyflavin reaction intermediate towards hydroxylation of salicylate. The addition of AMP or ribitol phosphate pieces to solutions of the truncated flavins results in a partial restoration of the enzymatic activity lost upon truncation of FAD, and the pieces direct the reaction of the C(4a)-hydroperoxyflavin intermediate towards hydroxylation of salicylate.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Oxigenases de Função Mista/metabolismo , Biocatálise , Descarboxilação , Flavina-Adenina Dinucleotídeo/química , Oxigenases de Função Mista/química , Modelos Moleculares , Estrutura Molecular , Oxirredução
10.
Biochemistry ; 60(35): 2672-2676, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34435776

RESUMO

The binding of adenosine 5'-triphosphate (ATP) and adenosine 5'-monophosphate (AMP) to adenylate kinase (AdK) drives closure of lids over the substrate adenosyl groups. We test the hypothesis that this conformational change activates AdK for catalysis. The rate constants for Homo sapiens adenylate kinase 1 (HsAdK1)-catalyzed phosphoryl group transfer to AMP, kcat/Km = 7.0 × 106 M-1 s-1, and phosphite dianion, (kHPi)obs ≤1 × 10-4 M-1 s-1, show that the binding energy of the adenosyl group effects a ≥7.0 × 1010-fold rate acceleration of phosphoryl transfer from ATP. The third-order rate constant of kcat/KHPiKEA = 260 M-2 s-1 for 1-(ß-d-erythrofuranosyl)adenine (EA)-activated phosphoryl transfer to phosphite dianion was determined, and the isohypophosphate reaction product characterized by 31P NMR. The results demonstrate the following: (i) a ≥14.7 kcal/mol stabilization of the transition state for phosphoryl transfer by the adenosyl group of AMP and a ≥2.6 × 106-fold rate acceleration from the EA-driven conformational change and (ii) the recovery of ≥8.7 kcal/mol of this transition state stabilization for EA-activated phosphoryl transfer from ATP to phosphite.


Assuntos
Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Fosfitos/química , Catálise , Ativação Enzimática , Humanos , Cinética , Conformação Proteica , Especificidade por Substrato
11.
Biochemistry ; 60(45): 3362-3373, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726391

RESUMO

The role of a global, substrate-driven, enzyme conformational change in enabling the extraordinarily large rate acceleration for orotidine 5'-monophosphate decarboxylase (OMPDC)-catalyzed decarboxylation of orotidine 5'-monophosphate (OMP) is examined in experiments that focus on the interactions between OMPDC and the ribosyl hydroxyl groups of OMP. The D37 and T100' side chains of OMPDC interact, respectively, with the C-3' and C-2' hydroxyl groups of enzyme-bound OMP. D37G and T100'A substitutions result in 1.4 kcal/mol increases in the activation barrier ΔG⧧ for catalysis of decarboxylation of the phosphodianion-truncated substrate 1-(ß-d-erythrofuranosyl)orotic acid (EO) but result in larger 2.1-2.9 kcal/mol increases in ΔG⧧ for decarboxylation of OMP and for phosphite dianion-activated decarboxylation of EO. This shows that these substitutions reduce transition-state stabilization by the Q215, Y217, and R235 side chains at the dianion binding site. The D37G and T100'A substitutions result in <1.0 kcal/mol increases in ΔG⧧ for activation of OMPDC-catalyzed decarboxylation of the phosphoribofuranosyl-truncated substrate FO by phosphite dianions. Experiments to probe the effect of D37 and T100' substitutions on the kinetic parameters for d-glycerol 3-phosphate and d-erythritol 4-phosphate activators of OMPDC-catalyzed decarboxylation of FO show that ΔG⧧ for sugar phosphate-activated reactions is increased by ca. 2.5 kcal/mol for each -OH interaction eliminated by D37G or T100'A substitutions. We conclude that the interactions between the D37 and T100' side chains and ribosyl or ribosyl-like hydroxyl groups are utilized to activate OMPDC for catalysis of decarboxylation of OMP, EO, and FO.


Assuntos
Orotidina-5'-Fosfato Descarboxilase/metabolismo , Uridina Monofosfato/análogos & derivados , Sítios de Ligação , Fenômenos Biofísicos , Catálise , Comunicação Celular , Eritritol/análogos & derivados , Hidróxidos/química , Cinética , Ácido Orótico/química , Orotidina-5'-Fosfato Descarboxilase/química , Orotidina-5'-Fosfato Descarboxilase/fisiologia , Fagocitose , Fosfitos , Domínios Proteicos , Ribose/química , Fosfatos Açúcares , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
12.
J Am Chem Soc ; 143(1): 137-141, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33375792

RESUMO

In aqueous solution, biological decarboxylation reactions proceed irreversibly to completion, whereas the reverse carboxylation processes are typically powered by the hydrolysis of ATP. The exchange of the carboxylate of ring-substituted arylacetates with isotope-labeled CO2 in polar aprotic solvents reported recently suggests a dramatic change in the partition of reaction pathways. Yet, there is little experimental data pertinent to the kinetic barriers for protonation and thermodynamic data on CO2 capture by the carbanions of decarboxylation reactions. Employing a combined quantum mechanical and molecular mechanical simulation approach, we investigated the decarboxylation reactions of a series of organic carboxylate compounds in aqueous and in dimethylformamide solutions, revealing that the reverse carboxylation barriers in solution are fully induced by solvent effects. A linear Bell-Evans-Polanyi relationship was found between the rates of decarboxylation and the Gibbs energies of reaction, indicating diminishing recombination barriers in DMF. In contrast, protonation of the carbanions by the DMF solvent has large free energy barriers, rendering the competing exchange of isotope-labeled CO2 reversible in DMF. The finding of an intricate interplay of carbanion stability and solute-solvent interaction in decarboxylation and carboxylation could be useful to designing novel materials for CO2 capture.


Assuntos
Dióxido de Carbono/química , Ácidos Carboxílicos/química , Dimetilformamida/química , Água/química , Descarboxilação , Simulação de Dinâmica Molecular , Solventes/química , Termodinâmica
13.
J Am Chem Soc ; 143(7): 2694-2698, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560827

RESUMO

The activation barriers ΔG⧧ for kcat/Km for the reactions of whole substrates catalyzed by 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase, and glucose 6-phosphate isomerase are reduced by 11-13 kcal/mol by interactions between the protein and the substrate phosphodianion. Between 4 and 6 kcal/mol of this dianion binding energy is expressed at the transition state for phosphite dianion activation of the respective enzyme-catalyzed reactions of truncated substrates d-xylonate or d-xylose. These and earlier results from studies on ß-phosphoglucomutase, triosephosphate isomerase, and glycerol 3-phosphate dehydrogenase define a cluster of six enzymes that catalyze reactions in glycolysis or of glycolytic intermediates, and which utilize substrate dianion binding energy for enzyme activation. Dianion-driven conformational changes, which convert flexible open proteins to tight protein cages for the phosphorylated substrate, have been thoroughly documented for five of these six enzymes. The clustering of metabolic enzymes which couple phosphodianion-driven conformational changes to enzyme activation suggests that this catalytic motif has been widely propagated in the proteome.


Assuntos
Glucose-6-Fosfato Isomerase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Biocatálise , Ativação Enzimática , Cinética , Fosfitos/química , Fosfitos/metabolismo , Especificidade por Substrato , Termodinâmica , Xilose/metabolismo
14.
Biochemistry ; 59(21): 2032-2040, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32374983

RESUMO

The D37 and T100' side chains of orotidine 5'-monophosphate decarboxylase (OMPDC) interact with the C-3' and C-2' ribosyl hydroxyl groups, respectively, of the bound substrate. We compare the intra-subunit interactions of D37 with the inter-subunit interactions of T100' by determining the effects of the D37G, D37A, T100'G, and T100'A substitutions on the following: (a) kcat and kcat/Km values for the OMPDC-catalyzed decarboxylations of OMP and 5-fluoroorotidine 5'-monophosphate (FOMP) and (b) the stability of dimeric OMPDC relative to the monomer. The D37G and T100'A substitutions resulted in 2 kcal mol-1 increases in ΔG† for kcat/Km for the decarboxylation of OMP, while the D37A and T100'G substitutions resulted in larger 4 and 5 kcal mol-1 increases, respectively, in ΔG†. The D37G and T100'A substitutions both resulted in smaller 2 kcal mol-1 decreases in ΔG† for the decarboxylation of FOMP compared to that of OMP. These results show that the D37G and T100'A substitutions affect the barrier to the chemical decarboxylation step while the D37A and T100'G substitutions also affect the barrier to a slow, ligand-driven enzyme conformational change. Substrate binding induces the movement of an α-helix (G'98-S'106) toward the substrate C-2' ribosyl hydroxy bound at the main subunit. The T100'G substitution destabilizes the enzyme dimer by 3.5 kcal mol-1 compared to the monomer, which is consistent with the known destabilization of α-helices by the internal Gly side chains [Serrano, L., et al. (1992) Nature, 356, 453-455]. We propose that the T100'G substitution weakens the α-helical contacts at the dimer interface, which results in a decrease in the dimer stability and an increase in the barrier to the ligand-driven conformational change.


Assuntos
Orotidina-5'-Fosfato Descarboxilase/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Biocatálise , Modelos Moleculares , Orotidina-5'-Fosfato Descarboxilase/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
15.
Biochemistry ; 59(51): 4856-4863, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33305938

RESUMO

K120 of glycerol 3-phosphate dehydrogenase (GPDH) lies close to the carbonyl group of the bound dihydroxyacetone phosphate (DHAP) dianion. pH rate (pH 4.6-9.0) profiles are reported for kcat and (kcat/Km)dianion for wild type and K120A GPDH-catalyzed reduction of DHAP by NADH, and for (kcat/KdKam) for activation of the variant-catalyzed reduction by CH3CH2NH3+, where Kam and Kd are apparent dissociation constants for CH3CH2NH3+ and DHAP, respectively. These profiles provide evidence that the K120 side chain cation, which is stabilized by an ion-pairing interaction with the D260 side chain, remains protonated between pH 4.6 and 9.0. The profiles for wild type and K120A variant GPDH show downward breaks at a similar pH value (7.6) that are attributed to protonation of the K204 side chain, which also lies close to the substrate carbonyl oxygen. The pH profiles for (kcat/Km)dianion and (kcat/KdKam) for the K120A variant show that the monoprotonated form of the variant is activated for catalysis by CH3CH2NH3+ but has no detectable activity, compared to the diprotonated variant, for unactivated reduction of DHAP. The pH profile for kcat shows that the monoprotonated K120A variant is active toward reduction of enzyme-bound DHAP, because of activation by a ligand-driven conformational change. Upward breaks in the pH profiles for kcat and (kcat/Km)dianion for K120A GPDH are attributed to protonation of D260. These breaks are consistent with the functional replacement of K120 by D260, and a plasticity in the catalytic roles of the active site side chains.


Assuntos
Fosfato de Di-Hidroxiacetona/química , Glicerolfosfato Desidrogenase/química , NAD/química , Biocatálise , Glicerolfosfato Desidrogenase/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lisina/química , Mutação , Oxirredução
16.
Biochemistry ; 59(16): 1582-1591, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32250105

RESUMO

A comparison of the values of kcat/Km for reduction of dihydroxyacetone phosphate (DHAP) by NADH catalyzed by wild type and K120A/R269A variant glycerol-3-phosphate dehydrogenase from human liver (hlGPDH) shows that the transition state for enzyme-catalyzed hydride transfer is stabilized by 12.0 kcal/mol by interactions with the cationic K120 and R269 side chains. The transition state for the K120A/R269A variant-catalyzed reduction of DHAP is stabilized by 1.0 and 3.8 kcal/mol for reactions in the presence of 1.0 M EtNH3+ and guanidinium cation (Gua+), respectively, and by 7.5 kcal/mol for reactions in the presence of a mixture of each cation at 1.0 M, so that the transition state stabilization by the ternary E·EtNH3+·Gua+ complex is 2.8 kcal/mol greater than the sum of stabilization by the respective binary complexes. This shows that there is cooperativity between the paired activators in transition state stabilization. The effective molarities (EMs) of ∼50 M determined for the K120A and R269A side chains are ≪106 M, the EM for entropically controlled reactions. The unusually efficient rescue of the activity of hlGPDH-catalyzed reactions by the HPi/Gua+ pair and by the Gua+/EtNH3+ activator pair is due to stabilizing interactions between the protein and the activator pieces that organize the K120 and R269 side chains at the active site. This "preorganization" of side chains promotes effective catalysis by hlGPDH and many other enzymes. The role of the highly conserved network of side chains, which include Q295, R269, N270, N205, T264, K204, D260, and K120, in catalysis is discussed.


Assuntos
Glicerolfosfato Desidrogenase/química , Catálise , Domínio Catalítico , Fosfato de Di-Hidroxiacetona/química , Ativadores de Enzimas/química , Etilaminas/química , Glicerolfosfato Desidrogenase/genética , Guanidina/química , Humanos , Cinética , Mutação , Oxirredução
17.
Biochemistry ; 58(8): 1061-1073, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30640445

RESUMO

Human liver glycerol 3-phosphate dehydrogenase ( hlGPDH) catalyzes the reduction of dihydroxyacetone phosphate (DHAP) to form glycerol 3-phosphate, using the binding energy associated with the nonreacting phosphodianion of the substrate to properly orient the enzyme-substrate complex within the active site. Herein, we report the crystal structures for unliganded, binary E·NAD, and ternary E·NAD·DHAP complexes of wild type hlGPDH, illustrating a new position of DHAP, and probe the kinetics of multiple mutant enzymes with natural and truncated substrates. Mutation of Lys120, which is positioned to donate a proton to the carbonyl of DHAP, results in similar increases in the activation barrier to hlGPDH-catlyzed reduction of DHAP and to phosphite dianion-activated reduction of glycolaldehyde, illustrating that these transition states show similar interactions with the cationic K120 side chain. The K120A mutation results in a 5.3 kcal/mol transition state destabilization, and 3.0 kcal/mol of the lost transition state stabilization is rescued by 1.0 M ethylammonium cation. The 6.5 kcal/mol increase in the activation barrier observed for the D260G mutant hlGPDH-catalyzed reaction represents a 3.5 kcal/mol weakening of transition state stabilization by the K120A side chain and a 3.0 kcal/mol weakening of the interactions with other residues. The interactions, at the enzyme active site, between the K120 side chain and the Q295 and R269 side chains were likewise examined by double-mutant analyses. These results provide strong evidence that the enzyme rate acceleration is due mainly or exclusively to transition state stabilization by electrostatic interactions with polar amino acid side chains.


Assuntos
Fosfato de Di-Hidroxiacetona/metabolismo , Glicerolfosfato Desidrogenase/química , Glicerolfosfato Desidrogenase/metabolismo , Glicerofosfatos/metabolismo , Fígado/enzimologia , Mutação , Domínio Catalítico , Cristalografia por Raios X , Glicerolfosfato Desidrogenase/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Especificidade por Substrato
18.
J Am Chem Soc ; 141(8): 3320-3331, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30703322

RESUMO

The enormous rate accelerations observed for many enzyme catalysts are due to strong stabilizing interactions between the protein and reaction transition state. The defining property of these catalysts is their specificity for binding the transition state with a much higher affinity than substrate. Experimental results are presented which show that the phosphodianion-binding energy of phosphate monoester substrates is used to drive conversion of their protein catalysts from flexible and entropically rich ground states to stiff and catalytically active Michaelis complexes. These results are generalized to other enzyme-catalyzed reactions. The existence of many enzymes in flexible, entropically rich, and inactive ground states provides a mechanism for utilization of ligand-binding energy to mold these catalysts into stiff and active forms. This reduces the substrate-binding energy expressed at the Michaelis complex, while enabling the full and specific expression of large transition-state binding energies. Evidence is presented that the complexity of enzyme conformational changes increases with increases in the enzymatic rate acceleration. The requirement that a large fraction of the total substrate-binding energy be utilized to drive conformational changes of floppy enzymes is proposed to favor the selection and evolution of protein folds with multiple flexible unstructured loops, such as the TIM-barrel fold. The effect of protein motions on the kinetic parameters for enzymes that undergo ligand-driven conformational changes is considered. The results of computational studies to model the complex ligand-driven conformational change in catalysis by triosephosphate isomerase are presented.


Assuntos
Triose-Fosfato Isomerase/metabolismo , Biocatálise , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Especificidade por Substrato , Triose-Fosfato Isomerase/química
19.
J Am Chem Soc ; 141(34): 13468-13478, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31365243

RESUMO

Kinetic parameters kex (s-1) and kex/Kd (M-1 s-1) are reported for exchange for deuterium in D2O of the C-6 hydrogen of 5-fluororotidine 5'-monophosphate (FUMP) catalyzed by the Q215A, Y217F, and Q215A/Y217F variants of yeast orotidine 5'-monophosphate decarboxylase (ScOMPDC) at pD 8.1, and by the Q215A variant at pD 7.1-9.3. The pD rate profiles for wildtype ScOMPDC and the Q215A variant are identical, except for a 2.5 log unit downward displacement in the profile for the Q215A variant. The Q215A, Y217F and Q215A/Y217F substitutions cause 1.3-2.0 kcal/mol larger increases in the activation barrier for wildtype ScOMPDC-catalyzed deuterium exchange compared with decarboxylation, because of the stronger apparent side chain interaction with the transition state for the deuterium exchange reaction. The stabilization of the transition state for the OMPDC-catalyzed deuterium exchange reaction of FUMP is ca. 19 kcal/mol smaller than the transition state for decarboxylation of OMP, and ca. 8 kcal/mol smaller than for OMPDC-catalyzed deprotonation of FUMP to form the vinyl carbanion intermediate common to OMPDC-catalyzed reactions OMP/FOMP and UMP/FUMP. We propose that ScOMPDC shows similar stabilizing interactions with the common portions of decarboxylation and deprotonation transition states that lead to formation of this vinyl carbanion intermediate, and that there is a large ca. (19-8) = 11 kcal/mol stabilization of the former transition state from interactions with the nascent CO2 of product. The effects of Q215A and Y217F substitutions on kcat/Km for decarboxylation of OMP are expressed mainly as an increase in Km for the reactions catalyzed by the variant enzymes, while the effects on kex/Kd for deuterium exchange are expressed mainly as an increase in kex. This shows that the Q215 and Y217 side chains stabilize the Michaelis complex to OMP for the decarboxylation reaction, compared with the complex to FUMP for the deuterium exchange reaction. These results provide strong support for the conclusion that interactions which stabilize the transition state for ScOMPDC-catalyzed decarboxylation at a nonpolar enzyme active site dominate over interactions that destabilize the ground-state Michaelis complex.


Assuntos
Orotidina-5'-Fosfato Descarboxilase/metabolismo , Saccharomyces cerevisiae/enzimologia , Uridina Monofosfato/análogos & derivados , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Domínio Catalítico , Descarboxilação , Cinética , Modelos Moleculares , Orotidina-5'-Fosfato Descarboxilase/química , Conformação Proteica , Prótons , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Termodinâmica , Uridina Monofosfato/metabolismo
20.
J Am Chem Soc ; 141(40): 16139-16150, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508957

RESUMO

We report results of detailed empirical valence bond simulations that model the effect of several amino acid substitutions on the thermodynamic (ΔG°) and kinetic activation (ΔG⧧) barriers to deprotonation of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) bound to wild-type triosephosphate isomerase (TIM), as well as to the K12G, E97A, E97D, E97Q, K12G/E97A, I170A, L230A, I170A/L230A, and P166A variants of this enzyme. The EVB simulations model the observed effect of the P166A mutation on protein structure. The E97A, E97Q, and E97D mutations of the conserved E97 side chain result in ≤1.0 kcal mol-1 decreases in the activation barrier for substrate deprotonation. The agreement between experimental and computed activation barriers is within ±1 kcal mol-1, with a strong linear correlation between ΔG⧧ and ΔG° for all 11 variants, with slopes ß = 0.73 (R2 = 0.994) and ß = 0.74 (R2 = 0.995) for the deprotonation of DHAP and GAP, respectively. These Brønsted-type correlations show that the amino acid side chains examined in this study function to reduce the standard-state Gibbs free energy of reaction for deprotonation of the weak α-carbonyl carbon acid substrate to form the enediolate phosphate reaction intermediate. TIM utilizes the cationic side chain of K12 to provide direct electrostatic stabilization of the enolate oxyanion, and the nonpolar side chains of P166, I170, and L230 are utilized for the construction of an active-site cavity that provides optimal stabilization of the enediolate phosphate intermediate relative to the carbon acid substrate.


Assuntos
Fosfato de Di-Hidroxiacetona/química , Gliceraldeído 3-Fosfato/química , Prótons , Triose-Fosfato Isomerase/química , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Catálise , Domínio Catalítico , Cinética , Modelos Moleculares , Mutação , Termodinâmica , Triose-Fosfato Isomerase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa