Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 589(7841): 270-275, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33116299

RESUMO

There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.


Assuntos
Antivirais/farmacologia , COVID-19/virologia , Colo/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Pulmão/citologia , Organoides/efeitos dos fármacos , Organoides/virologia , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/prevenção & controle , Colo/efeitos dos fármacos , Colo/virologia , Aprovação de Drogas , Feminino , Xenoenxertos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Pulmão/virologia , Masculino , Camundongos , Organoides/citologia , Organoides/metabolismo , SARS-CoV-2/genética , Estados Unidos , United States Food and Drug Administration , Tropismo Viral , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
4.
Annu Rev Biomed Eng ; 23: 517-546, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33974812

RESUMO

Liver disease is an important clinical problem, impacting 600 million people worldwide. It is the 11th-leading cause of death in the world. Despite constant improvement in treatment and diagnostics, the aging population and accumulated risk factors led to increased morbidity due to nonalcoholic fatty liver disease and steatohepatitis. Liver transplantation, first established in the 1960s, is the second-most-common solid organ transplantation and is the gold standard for the treatment of liver failure. However, less than 10% of the global need for liver transplantation is met at the current rates of transplantation due to the paucity of available organs. Cell- and tissue-based therapies present an alternative to organ transplantation. This review surveys the approaches and tools that have been developed, discusses the distinctive challenges that exist for cell- and tissue-based therapies, and examines the future directions of regenerative therapies for the treatment of liver disease.


Assuntos
Transplante de Fígado , Hepatopatia Gordurosa não Alcoólica , Idoso , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Fatores de Risco
5.
Stem Cell Reports ; 16(9): 2274-2288, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34403650

RESUMO

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. Here, using an established in vivo hamster model, we demonstrate that SARS-CoV-2 can be detected in cardiomyocytes of infected animals. Furthermore, we found damaged cardiomyocytes in hamsters and COVID-19 autopsy samples. To explore the mechanism, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be productively infected by SARS-CoV-2, leading to secretion of the monocyte chemoattractant cytokine CCL2 and subsequent monocyte recruitment. Increased CCL2 expression and monocyte infiltration was also observed in the hearts of infected hamsters. Although infected CMs suffer damage, we find that the presence of macrophages significantly reduces SARS-CoV-2-infected CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and suggests a mechanism of immune cell infiltration and histopathology in heart tissues of COVID-19 patients.


Assuntos
COVID-19/patologia , Quimiocina CCL2/metabolismo , Traumatismos Cardíacos/virologia , Monócitos/imunologia , Miócitos Cardíacos/metabolismo , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Humanos , Macrófagos/imunologia , Masculino , Miócitos Cardíacos/virologia , Células-Tronco Pluripotentes/citologia , Células Vero
6.
Res Sq ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33236003

RESUMO

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. In order to study the cause of myocardial pathology in COVID-19 patients, we used a hamster model to determine whether following infection SARS-CoV-2, the causative agent of COVID-19, can be detected in heart tissues. Here, we clearly demonstrate that viral RNA and nucleocapsid protein is present in cardiomyocytes in the hearts of infected hamsters. Interestingly, functional cardiomyocyte associated gene expression was decreased in infected hamster hearts, corresponding to an increase in reactive oxygen species (ROS). This data using an animal model was further validated using autopsy heart samples of COVID-19 patients. Moreover, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be infected by SARS-CoV-2 and that CCL2 is secreted upon SARS-CoV-2 infection, leading to monocyte recruitment. Increased CCL2 expression and macrophage infiltration was also observed in the hearts of infected hamsters. Using single cell RNA-seq, we also show that macrophages are able to decrease SARS-CoV-2 infection of CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and proposes a mechanism of immune-cell infiltration and pathology in heart tissue of COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa