Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586884

RESUMO

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Assuntos
Farmacologia Clínica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte , Ligantes
2.
PLoS Biol ; 20(11): e3001885, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441764

RESUMO

N6-methyladenosine (m6A) modification of RNA regulates normal and cancer biology, but knowledge of its function on long noncoding RNAs (lncRNAs) remains limited. Here, we reveal that m6A regulates the breast cancer-associated human lncRNA HOTAIR. Mapping m6A in breast cancer cell lines, we identify multiple m6A sites on HOTAIR, with 1 single consistently methylated site (A783) that is critical for HOTAIR-driven proliferation and invasion of triple-negative breast cancer (TNBC) cells. Methylated A783 interacts with the m6A "reader" YTHDC1, promoting chromatin association of HOTAIR, proliferation and invasion of TNBC cells, and gene repression. A783U mutant HOTAIR induces a unique antitumor gene expression profile and displays loss-of-function and antimorph behaviors by impairing and, in some cases, causing opposite gene expression changes induced by wild-type (WT) HOTAIR. Our work demonstrates how modification of 1 base in an lncRNA can elicit a distinct gene regulation mechanism and drive cancer-associated phenotypes.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Biologia
3.
Cancer Immunol Immunother ; 73(3): 42, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349455

RESUMO

BACKGROUND: Alpha-2-glycoprotein 1, zinc-binding (ZAG), a secreted protein encoded by the AZGP1 gene, is structurally similar to HLA class I. Despite its presumed immunological function, little is known about its role in tumor immunity. In this study, we thus aimed to determine the relationship between the expression of AZGP1/ZAG and the immunological profiles of breast cancer tissues at both the gene and protein level. METHODS: Using a publicly available gene expression dataset from a large-scale breast cancer cohort, we conducted gene set enrichment analysis (GSEA) to screen the biological processes associated with AZGP1. We analyzed the correlation between AZGP1 expression and immune cell composition in breast cancer tissues, estimated using CIBERSORTx. Previously, we evaluated the infiltration of 11 types of immune cells for 45 breast cancer tissues using flow cytometry (FCM). ZAG expression was evaluated by immunohistochemistry on these specimens and analyzed for its relationship with immune cell infiltration. The action of ZAG in M1/M2 polarization models using primary cultures of human peripheral blood mononuclear cells (PBMC)-derived macrophage (Mφ) was analyzed based on the expression of M1/M2 markers (CD86, CD80/CD163, MRC1) and HLA class I/II by FCM. RESULTS: AZGP1 expression was negatively correlated with multiple immunological processes and specific immune cell infiltration including Mφ M1 using GSEA and CIBERSORTx. ZAG expression was associated with decreased infiltration of monocytes/macrophages, non-classical monocytes, and myeloid-derived suppressor cells in tumor tissues assessed using FCM. In in vitro analyses, ZAG decreased the expression of CD80, CD163, MRC1, and HLA classes I/II in the M1 polarization model and the expression of CD163 and MRC1 in the M2 polarization model. CONCLUSION: ZAG is suggested to be a novel immunoregulatory factor affecting the Mφ phenotype in breast cancer tissues.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Antígeno B7-1 , Glicoproteínas , Leucócitos Mononucleares , Microambiente Tumoral , Zinco
4.
Am J Physiol Cell Physiol ; 323(6): C1777-C1790, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252127

RESUMO

Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.


Assuntos
Células Epiteliais , Alvéolos Pulmonares , Células Epiteliais/patologia , Alvéolos Pulmonares/patologia , Mucosa Respiratória , Epitélio , Pulmão/patologia
5.
Am J Physiol Cell Physiol ; 323(5): C1475-C1495, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189970

RESUMO

Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.


Assuntos
Neoplasias da Mama , Gravidez , Feminino , Animais , Humanos , Neoplasias da Mama/patologia , Glândulas Mamárias Animais/metabolismo , Evasão da Resposta Imune , Mama/patologia , Período Pós-Parto , Lactação , Mamíferos , Microambiente Tumoral
6.
Breast Cancer Res ; 23(1): 102, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736512

RESUMO

PURPOSE: Accumulating evidence has attracted attention to the androgen receptor (AR) as a biomarker and therapeutic target in breast cancer. We hypothesized that AR activity within the tumor has clinical implications and investigated whether androgen responsive serum factors might serve as a minimally invasive indicator of tumor AR activity. METHODS: Based on a comprehensive gene expression analysis of an AR-positive, triple negative breast cancer patient-derived xenograft (PDX) model, 163 dihydrotestosterone (DHT)-responsive genes were defined as an androgen responsive gene set. Among them, we focused on genes that were DHT-responsive that encode secreted proteins, namely KLK3, AZGP1 and PIP, that encode the secreted factors prostate specific antigen (PSA), zinc-alpha-2-glycoprotein (ZAG) and prolactin induced protein (PIP), respectively. Using AR-positive breast cancer cell lines representing all breast cancer subtypes, expression of candidate factors was assessed in response to agonist DHT and antagonist enzalutamide. Gene set enrichment analysis (GSEA) was performed on publically available gene expression datasets from breast cancer patients to analyze the relationship between genes encoding the secreted factors and other androgen responsive gene sets in each breast cancer subtype. RESULTS: Anti-androgen treatment decreased proliferation in all cell lines tested representing various tumor subtypes. Expression of the secreted factors was regulated by AR activation in the majority of breast cancer cell lines. In GSEA, the candidate genes were positively correlated with an androgen responsive gene set across breast cancer subtypes. CONCLUSION: KLK3, AZGP1 and PIP are AR regulated and reflect tumor AR activity. Further investigations are needed to examine the potential efficacy of these factors as serum biomarkers.


Assuntos
Adipocinas/metabolismo , Neoplasias da Mama/metabolismo , Calicreínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antígeno Prostático Específico/metabolismo , Receptores Androgênicos/metabolismo , Adipocinas/genética , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/farmacologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Calicreínas/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Antígeno Prostático Específico/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Development ; 143(22): 4236-4248, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729410

RESUMO

Profiling of RNA from mouse mammary epithelial cells (MECs) isolated on pregnancy day (P)14 and lactation day (L)2 revealed that the majority of differentially expressed microRNA declined precipitously between late pregnancy and lactation. The decline in miR-150, which exhibited the greatest fold-decrease, was verified quantitatively and qualitatively. To test the hypothesis that the decline in miR-150 is crucial for lactation, MEC-specific constitutive miR-150 was achieved by crossing ROSA26-lox-STOP-lox-miR-150 mice with WAP-driven Cre recombinase mice. Both biological and foster pups nursed by bitransgenic dams exhibited a dramatic decrease in survival compared with offspring nursed by littermate control dams. Protein products of predicted miR-150 targets Fasn, Olah, Acaca, and Stat5B were significantly suppressed in MECs of bitransgenic mice with constitutive miR-150 expression as compared with control mice at L2. Lipid profiling revealed a significant reduction in fatty acids synthesized by the de novo pathway in L2 MECs of bitransgenic versus control mice. Collectively, these data support the hypothesis that a synchronized decrease in miRNAs, such as miR-150, at late pregnancy serves to allow translation of targets crucial for lactation.


Assuntos
Lactação/genética , Lipogênese/genética , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Animais , Células Cultivadas , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Lactação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Análise em Microsséries , Gravidez/genética , Gravidez/metabolismo
8.
Mol Carcinog ; 58(2): 196-205, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30294913

RESUMO

Ovarian cancer metastasizes via direct seeding, whereby cancer cells shed from the primary site, resist cell death in the peritoneal cavity, then metastasize to peritoneal organs. We sought to identify molecular mechanisms that facilitate ovarian cancer cell anchorage independent survival. Gene expression profiling was performed on ovarian cancer cells grown in attached or forced suspension culture and confirmed by RT-qPCR. Anoikis was measured by Caspase 3/7 assay. Since the long non-coding RNA Metastasis Associated Lung Adenocarcinoma transcript 1 (MALAT1) was among the transcripts most highly increased in forced suspension culture, modified anti-sense oligonucleotides (ASO) were used to inhibit its expression. Knockdown of RBFOX2 and KIF1B was performed using shRNAs. Publically available datasets were analyzed for association of MALAT1 gene expression with clinicopathological variables. In multiple anoikis-resistant ovarian cancer cell lines MALAT1 expression increased after 24 and 48 h in forced suspension culture compared to attached culture. High MALAT1 is associated with increased stage, recurrence, and reduced survival in ovarian cancer, and in a small percentage of ovarian cancers MALAT1 is amplified. MALAT1 knockdown resulted in decreased proliferation, invasion, anchorage-independent growth, and increased anoikis. Suppression of MALAT1 also resulted in decreased expression of RBFOX2, and alternative processing of the pro-apoptotic tumor suppressor gene KIF1B. RBFOX2 suppression resulted in preferential splicing of the pro-apoptotic isoform of KIF1B (KIFB1B-beta) and increased anoikis. The lncRNA MALAT1 facilitates a pro-metastatic phenotype in ovarian cancer by promoting alternative RNA processing and differential expression of anti-apoptosis and epithelial to mesenchymal transition (EMT)-related genes.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica/métodos , Neoplasias Ovarianas/genética , Fatores de Processamento de RNA/genética , RNA Longo não Codificante/genética , Proteínas Repressoras/genética , Anoikis , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Regulação para Cima
9.
Breast Cancer Res ; 16(1): R7, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24451109

RESUMO

INTRODUCTION: The androgen receptor (AR) is widely expressed in breast cancers and has been proposed as a therapeutic target in estrogen receptor alpha (ER) negative breast cancers that retain AR. However, controversy exists regarding the role of AR, particularly in ER + tumors. Enzalutamide, an AR inhibitor that impairs nuclear localization of AR, was used to elucidate the role of AR in preclinical models of ER positive and negative breast cancer. METHODS: We examined nuclear AR to ER protein ratios in primary breast cancers in relation to response to endocrine therapy. The effects of AR inhibition with enzalutamide were examined in vitro and in preclinical models of ER positive and negative breast cancer that express AR. RESULTS: In a cohort of 192 women with ER + breast cancers, a high ratio of AR:ER (≥2.0) indicated an over four fold increased risk for failure while on tamoxifen (HR = 4.43). The AR:ER ratio had an independent effect on risk for failure above ER % staining alone. AR:ER ratio is also an independent predictor of disease-free survival (HR = 4.04, 95% CI: 1.68, 9.69; p = 0.002) and disease specific survival (HR = 2.75, 95% CI: 1.11, 6.86; p = 0.03). Both enzalutamide and bicalutamide inhibited 5-alpha-dihydrotestosterone (DHT)-mediated proliferation of breast cancer lines in vitro; however, enzalutamide uniquely inhibited estradiol (E2)-mediated proliferation of ER+/AR + breast cancer cells. In MCF7 xenografts (ER+/AR+) enzalutamide inhibited E2-driven tumor growth as effectively as tamoxifen by decreasing proliferation. Enzalutamide also inhibited DHT- driven tumor growth in both ER positive (MCF7) and negative (MDA-MB-453) xenografts, but did so by increasing apoptosis. CONCLUSIONS: AR to ER ratio may influence breast cancer response to traditional endocrine therapy. Enzalutamide elicits different effects on E2-mediated breast cancer cell proliferation than bicalutamide. This preclinical study supports the initiation of clinical studies evaluating enzalutamide for treatment of AR+ tumors regardless of ER status, since it blocks both androgen- and estrogen- mediated tumor growth.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Antagonistas de Receptores de Andrógenos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Feniltioidantoína/análogos & derivados , Anilidas/uso terapêutico , Animais , Antineoplásicos Hormonais/uso terapêutico , Apoptose/efeitos dos fármacos , Benzamidas , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Intervalo Livre de Doença , Feminino , Humanos , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/uso terapêutico , Compostos de Tosil/uso terapêutico , Transplante Heterólogo
10.
Cancer Immunol Res ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115368

RESUMO

Ovarian cancer is the deadliest gynecological malignancy, and therapeutic options and mortality rates over the last three decades have largely not changed. Recent studies indicate that the composition of the tumor immune microenvironment (TIME) influences patient outcomes. To improve spatial understanding of the TIME, we performed multiplexed ion beam imaging on 83 human high-grade serous carcinoma tumor samples, identifying about 160,000 cells across 23 cell types. For 77 of these samples meeting inclusion criteria, we generated composition features based on cell type proportions, spatial features based on the distances between cell types, and spatial network features representing cell interactions and cell clustering patterns, which we linked to traditional clinical and immunohistochemical variables and patient overall survival (OS) and progression-free survival (PFS) outcomes. Among these features, we found several significant univariate correlations, including B-cell contact with M1 macrophages (OS hazard ratio HR=0.696, p=0.011, PFS HR=0.734, p=0.039). We then used high-dimensional random forest models to evaluate out-of-sample predictive performance for OS and PFS outcomes and to derive relative feature importance scores for each feature. The top model for predicting low or high PFS used TIME composition and spatial features and achieved an average AUC (area under the receiver-operating characteristic curve) score of 0.71. The results demonstrate the importance of spatial structure in understanding how the TIME contributes to treatment outcomes. Furthermore, the present study provides a generalizable roadmap for spatial analyses of the TIME in ovarian cancer research.

11.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352574

RESUMO

Despite ovarian cancer being the deadliest gynecological malignancy, there has been little change to therapeutic options and mortality rates over the last three decades. Recent studies indicate that the composition of the tumor immune microenvironment (TIME) influences patient outcomes but are limited by a lack of spatial understanding. We performed multiplexed ion beam imaging (MIBI) on 83 human high-grade serous carcinoma tumors - one of the largest protein-based, spatially-intact, single-cell resolution tumor datasets assembled - and used statistical and machine learning approaches to connect features of the TIME spatial organization to patient outcomes. Along with traditional clinical/immunohistochemical attributes and indicators of TIME composition, we found that several features of TIME spatial organization had significant univariate correlations and/or high relative importance in high-dimensional predictive models. The top performing predictive model for patient progression-free survival (PFS) used a combination of TIME composition and spatial features. Results demonstrate the importance of spatial structure in understanding how the TIME contributes to treatment outcomes. Furthermore, the present study provides a generalizable roadmap for spatial analyses of the TIME in ovarian cancer research.

12.
Cancer Res Commun ; 4(3): 822-833, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38451784

RESUMO

High-grade serous carcinoma (HGSC) of the fallopian tube, ovary, and peritoneum is the most common type of ovarian cancer and is predicted to be immunogenic because the presence of tumor-infiltrating lymphocytes conveys a better prognosis. However, the efficacy of immunotherapies has been limited because of the immune-suppressed tumor microenvironment (TME). Tumor metabolism and immune-suppressive metabolites directly affect immune cell function through the depletion of nutrients and activation of immune-suppressive transcriptional programs. Tryptophan (TRP) catabolism is a contributor to HGSC disease progression. Two structurally distinct rate-limiting TRP catabolizing enzymes, indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2), evolved separately to catabolize TRP. IDO1/TDO2 are aberrantly expressed in carcinomas and metabolize TRP into the immune-suppressive metabolite kynurenine (KYN), which can engage the aryl hydrocarbon receptor to drive immunosuppressive transcriptional programs. To date, IDO inhibitors tested in clinical trials have had limited efficacy, but those inhibitors did not target TDO2, and we find that HGSC cell lines and clinical outcomes are more dependent on TDO2 than IDO1. To identify inflammatory HGSC cancers with poor prognosis, we stratified patient ascites samples by IL6 status, which correlates with poor prognosis. Metabolomics revealed that IL6-high patient samples had enriched KYN. TDO2 knockdown significantly inhibited HGSC growth and TRP catabolism. The orally available dual IDO1/TDO2 inhibitor, AT-0174, significantly inhibited tumor progression, reduced tumor-associated macrophages, and reduced expression of immune-suppressive proteins on immune and tumor cells. These studies demonstrate the importance of TDO2 and the therapeutic potential of AT-0174 to overcome an immune-suppressed TME. SIGNIFICANCE: Developing strategies to improve response to chemotherapy is essential to extending disease-free intervals for patients with HGSC of the fallopian tube, ovary, and peritoneum. In this article, we demonstrate that targeting TRP catabolism, particularly with dual inhibition of TDO2 and IDO1, attenuates the immune-suppressive microenvironment and, when combined with chemotherapy, extends survival compared with chemotherapy alone.


Assuntos
Neoplasias Ovarianas , Triptofano Oxigenase , Feminino , Humanos , Triptofano Oxigenase/genética , Triptofano/metabolismo , Antígeno B7-H1 , Interleucina-6 , Cinurenina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Macrófagos/metabolismo , Microambiente Tumoral
14.
NPJ Breast Cancer ; 10(1): 88, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39368973

RESUMO

Most ER+ breast cancers (BC) express androgen receptors (AR). This randomized phase II trial of 4 months of neoadjuvant fulvestrant (Fulv) alone or with enzalutamide (Combo) assessed whether adding AR blockade to Fulv would limit residual tumor at the time of surgery, as measured by modified preoperative endocrine predictive index (PEPI) score. Eligible patients were women with ER+/HER2- primary BC cT2 or greater. Stratification factors were clinical node and T-stage. Fresh tumor biopsies were required at study entry, after 4 weeks on therapy (W5), and at surgery. Laboratory analyses on tumors included immunochemistry (IHC) for ER/PR/AR/GR and Ki67 protein, evaluation of gene expression, multiplex for myeloid lineage immune cells, reverse-phase protein array, and plasma metabolomic analyses. Of 69 consented patients, 59 were evaluable. Toxicity was as expected with endocrine therapy. Combo achieved PEPI = 0 more frequently (24%: 8/33) than Fulv (8%: 2/26). Ki67 was ≤10% across arms by W5 in 76% of tumors. Activation of mTOR pathway proteins was elevated in tumors with poor Ki67 response. Tumors in both arms showed decreased estrogen-regulated and cell division gene sets, while Combo arm tumors uniquely exhibited enrichment of immune activation gene sets, including interferon gamma, complement, inflammation, antigen processing, and B and T cell activation. Multiplex IHC showed significantly reduced tumor-associated macrophages and CD14+/HLADR-/CD68- MDSCs in Combo tumors at W5. In summary, Combo tumors showed a higher PEPI = 0 response, Ki67 response, and more activated tumor immune microenvironment than Fulv. The odds of response were 4.6-fold higher for patients with ILC versus IDC. (Trial registration: This trial is registered at Clinicaltrials.gov ( https://www.clinicaltrials.gov/study/NCT02955394?id=16-1042&rank=1 ). The trial registration number is NCT02955394. The full trial protocol is available under Study Details at the Clinicaltrials.gov link provided).

15.
J Mammary Gland Biol Neoplasia ; 17(1): 65-77, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22350980

RESUMO

Carcinogenesis is a complex process during which cells undergo genetic and epigenetic alterations. These changes can lead tumor cells to acquire characteristics that enable movement from the primary site of origin when conditions become unfavorable. Such characteristics include gain of front-rear polarity, increased migration/invasion, and resistance to anoikis, which facilitate tumor survival during metastasis. An epithelial to mesenchymal transition (EMT) constitutes one way that cancer cells can gain traits that promote tumor progression and metastasis. Two microRNA (miRNA) families, the miR-200 and miR-221 families, play crucial opposing roles that affect the differentiation state of breast cancers. These two families are differentially expressed between the luminal A subtype of breast cancer as compared to the less well-differentiated triple negative breast cancers (TNBCs) that exhibit markers indicative of an EMT. The miR-200 family promotes a well-differentiated epithelial phenotype, while high miR-221/222 results in a poorly differentiated, mesenchymal-like phenotype. This review focuses on the mechanisms (specific proven targets) by which these two miRNA families exert opposing effects on cellular plasticity during breast tumorigenesis and metastasis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Animais , Feminino , Humanos
16.
Cells ; 12(3)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766786

RESUMO

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype for which no effective targeted therapies are available. Growing evidence suggests that chemotherapy-resistant cancer cells with stem-like properties (CSC) may repopulate the tumor. The androgen receptor (AR) is expressed in up to 50% of TNBCs, and AR inhibition decreases CSC and tumor initiation. Runt-related transcription factor 1 (RUNX1) correlates with poor prognosis in TNBC and is regulated by the AR in prostate cancer. Our group has shown that RUNX1 promotes TNBC cell migration and regulates tumor gene expression. We hypothesized that RUNX1 is regulated by the AR and that both may work together in TNBC CSC to promote disease recurrence following chemotherapy. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments in MDA-MB-453 revealed AR binding to RUNX1 regulatory regions. RUNX1 expression is upregulated by dihydrotestosterone (DHT) in MDA-MB-453 and in an AR+-TNBC HCI-009 patient-derived xenograft (PDX) tumors (p < 0.05). RUNX1 is increased in a CSC-like experimental model in MDA-MB-453 and SUM-159PT cells (p < 0.05). Inhibition of RUNX1 transcriptional activity reduced the expression of CSC markers. Interestingly, RUNX1 inhibition reduced cell viability and enhanced paclitaxel and enzalutamide sensitivity. Targeting RUNX1 may be an attractive strategy to potentiate the anti-tumor effects of AR inhibition, specifically in the slow-growing CSC-like populations that resist chemotherapy which lead to metastatic disease.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Recidiva Local de Neoplasia , Receptores Androgênicos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Feminino
17.
Cancers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37568766

RESUMO

Bi-directional crosstalk between the tumor and the tumor microenvironment (TME) has been shown to increase the rate of tumor evolution and to play a key role in neoplastic progression, therapeutic resistance, and a patient's overall survival. Here, we set out to use a comprehensive liquid-biopsy analysis to study cancer and specific TME cells in circulation and their association with disease status. Cytokeratin+, CD45- circulating rare cells (CRCs) from nine breast and four prostate cancer patients were characterized through morphometrics, single-cell copy number analysis, and targeted multiplexed proteomics to delineate cancer cell lineage from other rare cells originating in the TME. We show that we can detect epithelial circulating tumor cells (EPI.CTC), CTCs undergoing epithelial-to-mesenchymal transition (EMT.CTC) and circulating endothelial cells (CECs) using a universal rare event detection platform (HDSCA). Longitudinal analysis of an index patient finds that CTCs are present at the time of disease progression, while CECs are predominately present at the time of stable disease. In a small cohort of prostate and breast cancer patients, we find high inter-patient and temporal intra-patient variability in the expression of tissue specific markers such as ER, HER2, AR, PSA and PSMA and EpCAM. Our study stresses the importance of the multi-omic characterization of circulating rare cells in patients with breast and prostate carcinomas, specifically highlighting overlapping and cell type defining proteo-genomic characteristics of CTCs and CECs.

18.
NPJ Breast Cancer ; 9(1): 41, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210417

RESUMO

This clinical trial combined fulvestrant with the anti-androgen enzalutamide in women with metastatic ER+/HER2- breast cancer (BC). Eligible patients were women with ECOG 0-2, ER+/HER2- measurable or evaluable metastatic BC. Prior fulvestrant was allowed. Fulvestrant was administered at 500 mg IM on days 1, 15, 29, and every 4 weeks thereafter. Enzalutamide was given at 160 mg po daily. Fresh tumor biopsies were required at study entry and after 4 weeks of treatment. The primary efficacy endpoint of the trial was the clinical benefit rate at 24 weeks (CBR24). The median age was 61 years (46-87); PS 1 (0-1); median of 4 prior non-hormonal and 3 prior hormonal therapies for metastatic disease. Twelve had prior fulvestrant, and 91% had visceral disease. CBR24 was 25% (7/28 evaluable). Median progression-free survival (PFS) was 8 weeks (95% CI: 2-52). Adverse events were as expected for hormonal therapy. Significant (p < 0.1) univariate relationships existed between PFS and ER%, AR%, and PIK3CA and/or PTEN mutations. Baseline levels of phospho-proteins in the mTOR pathway were more highly expressed in biopsies of patients with shorter PFS. Fulvestrant plus enzalutamide had manageable side effects. The primary endpoint of CBR24 was 25% in heavily pretreated metastatic ER+/HER2- BC. Short PFS was associated with activation of the mTOR pathway, and PIK3CA and/or PTEN mutations were associated with an increased hazard of progression. Thus, a combination of fulvestrant or other SERD plus AKT/PI3K/mTOR inhibitor with or without AR inhibition warrants investigation in second-line endocrine therapy of metastatic ER+ BC.

19.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080161

RESUMO

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Assuntos
Comportamento de Massa , Neoplasias , Humanos , Comunicação
20.
NPJ Breast Cancer ; 8(1): 62, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538119

RESUMO

Both TP53 and ESR1 mutations occur frequently in estrogen receptor positive (ER+) metastatic breast cancers (MBC) and their distinct roles in breast cancer tumorigenesis and progression are well appreciated. Recent clinical studies discovered mutual exclusivity between TP53 and ESR1 mutations in metastatic breast cancers; however, mechanisms underlying this intriguing clinical observation remain largely understudied and unknown. Here, we explored the interplay between TP53 and ESR1 mutations using publicly available clinical and experimental data sets. We first confirmed the robust mutational exclusivity using six independent cohorts with 1,056 ER+ MBC samples and found that the exclusivity broadly applies to all ER+ breast tumors regardless of their clinical and distinct mutational features. ESR1 mutant tumors do not exhibit differential p53 pathway activity, whereas we identified attenuated ER activity and expression in TP53 mutant tumors, driven by a p53-associated E2 response gene signature. Further, 81% of these p53-associated E2 response genes are either direct targets of wild-type (WT) p53-regulated transactivation or are mutant p53-associated microRNAs, representing bimodal mechanisms of ER suppression. Lastly, we analyzed the very rare cases with co-occurrences of TP53 and ESR1 mutations and found that their simultaneous presence was also associated with reduced ER activity. In addition, tumors with dual mutations showed higher levels of total and PD-L1 positive macrophages. In summary, our study utilized multiple publicly available sources to explore the mechanism underlying the mutual exclusivity between ESR1 and TP53 mutations, providing further insights and testable hypotheses of the molecular interplay between these two pivotal genes in ER+ MBC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa