Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 17(4): 584, 2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-27092500

RESUMO

Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Diclofenaco/toxicidade , Hepatócitos/efeitos dos fármacos , Testes de Toxicidade/instrumentação , Anti-Inflamatórios não Esteroides/metabolismo , Células Cultivadas , Diclofenaco/metabolismo , Desenho de Equipamento , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Transcriptoma
2.
PLoS One ; 6(7): e21950, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779357

RESUMO

Increasing numbers of human cowpox virus infections that are being observed and that particularly affect young non-vaccinated persons have renewed interest in this zoonotic disease. Usually causing a self-limiting local infection, human cowpox can in fact be fatal for immunocompromised individuals. Conventional smallpox vaccination presumably protects an individual from infections with other Orthopoxviruses, including cowpox virus. However, available live vaccines are causing severe adverse reactions especially in individuals with impaired immunity. Because of a decrease in protective immunity against Orthopoxviruses and a coincident increase in the proportion of immunodeficient individuals in today's population, safer vaccines need to be developed. Recombinant subunit vaccines containing cross-reactive antigens are promising candidates, which avoid the application of infectious virus. However, subunit vaccines should contain carefully selected antigens to confer a solid cross-protection against different Orthopoxvirus species. Little is known about the cross-reactivity of antibodies elicited to cowpox virus proteins. Here, we first identified 21 immunogenic proteins of cowpox and vaccinia virus by serological screenings of genomic Orthopoxvirus expression libraries. Screenings were performed using sera from vaccinated humans and animals as well as clinical sera from patients and animals with a naturally acquired cowpox virus infection. We further analyzed the cross-reactivity of the identified immunogenic proteins. Out of 21 identified proteins 16 were found to be cross-reactive between cowpox and vaccinia virus. The presented findings provide important indications for the design of new-generation recombinant subunit vaccines.


Assuntos
Genoma Viral/genética , Orthopoxvirus/genética , Orthopoxvirus/imunologia , Vacinas Virais/imunologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/imunologia , Humanos , Reação em Cadeia da Polimerase , Vaccinia virus/genética , Vaccinia virus/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa