Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(2): 601-606, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38180909

RESUMO

Electronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.

2.
Phys Rev Lett ; 128(5): 057702, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179933

RESUMO

A unique feature of the complex band structures of moiré materials is the presence of minivalleys, their hybridization, and scattering between them. Here, we investigate magnetotransport oscillations caused by scattering between minivalleys-a phenomenon analogous to magnetointersubband oscillations-in a twisted double bilayer graphene sample with a twist angle of 1.94°. We study and discuss the potential scattering mechanisms and find an electron-phonon mechanism and valley conserving scattering to be likely. Finally, we discuss the relevance of our findings for different materials and twist angles.

3.
Nano Lett ; 21(20): 8777-8784, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34662136

RESUMO

Twisted two-dimensional structures open new possibilities in band structure engineering. At magic twist angles, flat bands emerge, which gave a new drive to the field of strongly correlated physics. In twisted double bilayer graphene dual gating allows changing of the Fermi level and hence the electron density and also allows tuning of the interlayer potential, giving further control over band gaps. Here, we demonstrate that by application of hydrostatic pressure, an additional control of the band structure becomes possible due to the change of tunnel couplings between the layers. We find that the flat bands and the gaps separating them can be drastically changed by pressures up to 2 GPa, in good agreement with our theoretical simulations. Furthermore, our measurements suggest that in finite magnetic field due to pressure a topologically nontrivial band gap opens at the charge neutrality point at zero displacement field.

4.
Nano Lett ; 21(24): 10409-10415, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34882420

RESUMO

Magnetic nanowires (NWs) are essential building blocks of spintronics devices as they offer tunable magnetic properties and anisotropy through their geometry. While the synthesis and compositional control of NWs have seen major improvements, considerable challenges remain for the characterization of local magnetic features at the nanoscale. Here, we demonstrate nonperturbative field distribution mapping in ultrascaled magnetic nanowires with diameters down to 6 nm by scanning nitrogen-vacancy magnetometry. This enables localized, minimally invasive magnetic imaging with sensitivity down to 3 µT Hz-1/2. The imaging reveals the presence of weak magnetic inhomogeneities inside in-plane magnetized nanowires that are largely undetectable with standard metrology and can be related to local fluctuations of the NWs' saturation magnetization. In addition, the strong magnetic field confinement in the nanowires allows for the study of the interaction between the stray magnetic field and the nitrogen-vacancy sensor, thus clarifying the contrasting formation mechanisms for technologically relevant magnetic nanostructures.


Assuntos
Diamante , Nanofios , Diamante/química , Campos Magnéticos , Magnetismo/métodos , Nitrogênio/química
5.
Phys Rev Lett ; 125(17): 176801, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156662

RESUMO

Control over minivalley polarization and interlayer coupling is demonstrated in double bilayer graphene twisted with an angle of 2.37°. This intermediate angle is small enough for the minibands to form and large enough such that the charge carrier gases in the layers can be tuned independently. Using a dual-gated geometry we identify and control all possible combinations of minivalley polarization via the population of the two bilayers. An applied displacement field opens a band gap in either of the two bilayers, allowing us to even obtain full minivalley polarization. In addition, the carriers, formerly separated by their minivalley character, are mixed by tuning through a Lifshitz transition, where the Fermi surface topology changes. The high degree of control over the minivalley character of the bulk charge transport in twisted double bilayer graphene offers new opportunities for realizing valleytronics devices such as valley valves, filters, and logic gates.

6.
Phys Rev Lett ; 124(12): 126802, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281833

RESUMO

In multivalley semiconductors, the valley degree of freedom can be potentially used to store, manipulate, and read quantum information, but its control remains challenging. The valleys in bilayer graphene can be addressed by a perpendicular magnetic field which couples by the valley g factor g_{v}. However, control over g_{v} has not been demonstrated yet. We experimentally determine the energy spectrum of a quantum point contact realized by a suitable gate geometry in bilayer graphene. Using finite bias spectroscopy, we measure the energy scales arising from the lateral confinement as well as the Zeeman splitting and find a spin g factor g_{s}∼2. g_{v} can be tuned by a factor of 3 using vertical electric fields, g_{v}∼40-120. The results are quantitatively explained by a calculation considering topological magnetic moment and its dependence on confinement and the vertical displacement field.

7.
Nano Lett ; 19(12): 8821-8828, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31670969

RESUMO

Crystal fields occur due to a potential difference between chemically different atomic species. In van der Waals heterostructures such fields are naturally present perpendicular to the planes. It has been realized recently that twisted graphene multilayers provide powerful playgrounds to engineer electronic properties by the number of layers, the twist angle, applied electric biases, electronic interactions, and elastic relaxations, but crystal fields have not received the attention they deserve. Here, we show that the band structure of large-angle twisted double bilayer graphene is strongly modified by crystal fields. In particular, we experimentally demonstrate that twisted double bilayer graphene, encapsulated between hBN layers, exhibits an intrinsic band gap. By the application of an external field, the gaps in the individual bilayers can be closed, allowing to determine the crystal fields. We find that crystal fields point from the outer to the inner layers with strengths in the bottom/top bilayer [Formula: see text] = 0.13 V/nm ≈ [Formula: see text] = 0.12 V/nm. We show both by means of first-principles calculations and low energy models that crystal fields open a band gap in the ground state. Our results put forward a physical scenario in which a crystal field effect in carbon substantially impacts the low energy properties of twisted double bilayer graphene, suggesting that such contributions must be taken into account in other regimes to faithfully predict the electronic properties of twisted graphene multilayers.

8.
Nano Lett ; 19(8): 5216-5221, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31311270

RESUMO

We report on charge detection in electrostatically defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high-quality quantum dots. The charge detector is based on a second quantum dot separated from the first dot by depletion underneath a 150 nm wide gate. We show that Coulomb resonances in the sensing dot are sensitive to individual charging events on the nearby quantum dot. The potential change due to single electron charging causes a steplike change (up to 77%) in the current through the charge detector. Furthermore, the charging states of a quantum dot with tunable tunneling barriers and of coupled quantum dots can be detected.

9.
Nano Lett ; 18(11): 6725-6730, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30336041

RESUMO

We explore a network of electronic quantum valley Hall states in the moiré crystal of minimally twisted bilayer graphene. In our transport measurements, we observe Fabry-Pérot and Aharanov-Bohm oscillations that are robust in magnetic fields ranging from 0 to 8 T, which is in strong contrast to more conventional two-dimensional systems where trajectories in the bulk are bent by the Lorentz force. This persistence in magnetic field and the linear spacing in density indicate that charge carriers in the bulk flow in topologically protected, one-dimensional channels. With this work, we demonstrate coherent electronic transport in a lattice of topologically protected states.

10.
Nano Lett ; 18(1): 553-559, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29286668

RESUMO

We report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as R ∼ 10 GΩ. This exceeds previously reported values of R = 10-100 kΩ.1-3 We attribute this improvement to the use of a graphite back gate. We realize two split gate devices which define an electronic channel on the scale of the Fermi-wavelength. A channel gate covering the gap between the split gates varies the charge carrier density in the channel. We observe device-dependent conductance quantization of ΔG = 2e2/h and ΔG = 4e2/h. In quantizing magnetic fields normal to the sample plane, we recover the four-fold Landau level degeneracy of bilayer graphene. Unexpected mode crossings appear at the crossover between zero magnetic field and the quantum Hall regime.

11.
Nano Lett ; 18(8): 5042-5048, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29985000

RESUMO

Electrostatic confinement of charge carriers in bilayer graphene provides a unique platform for carbon-based spin, charge, or exchange qubits. By exploiting the possibility to induce a band gap with electrostatic gating, we form a versatile and widely tunable multiquantum dot system. We demonstrate the formation of single, double and triple quantum dots that are free of any sign of disorder. In bilayer graphene, we have the possibility to form tunnel barriers using different mechanisms. We can exploit the ambipolar nature of bilayer graphene where pn-junctions form natural tunnel barriers. Alternatively, we can use gates to form tunnel barriers, where we can vary the tunnel coupling by more than 2 orders of magnitude tuning between a deeply Coulomb blockaded system and a Fabry-Pérot-like cavity. Demonstrating such tunability is an important step toward graphene-based quantum computation.

12.
Phys Rev Lett ; 121(24): 247701, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608765

RESUMO

The strong spin-orbit coupling and the broken inversion symmetry in monolayer transition metal dichalcogenides results in spin-valley coupled band structures. Such a band structure leads to novel applications in the fields of electronics and optoelectronics. Density functional theory calculations as well as optical experiments have focused on spin-valley coupling in the valence band. Here we present magnetotransport experiments on high-quality n-type monolayer molybdenum disulphide (MoS_{2}) samples, displaying highly resolved Shubnikov-de Haas oscillations at magnetic fields as low as 2 T. We find the effective mass 0.7m_{e}, about twice as large as theoretically predicted and almost independent of magnetic field and carrier density. We further detect the occupation of the second spin-orbit split band at an energy of about 15 meV, i.e., about a factor of 5 larger than predicted. In addition, we demonstrate an intricate Landau level spectrum arising from a complex interplay between a density-dependent Zeeman splitting and spin- and valley-split Landau levels. These observations, enabled by the high electronic quality of our samples, testify to the importance of interaction effects in the conduction band of monolayer MoS_{2}.

13.
Phys Rev Lett ; 121(25): 257702, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608777

RESUMO

We present measurements of quantized conductance in electrostatically induced quantum point contacts in bilayer graphene. The application of a perpendicular magnetic field leads to an intricate pattern of lifted and restored degeneracies with increasing field: at zero magnetic field the degeneracy of quantized one-dimensional subbands is four, because of a twofold spin and a twofold valley degeneracy. By switching on the magnetic field, the valley degeneracy is lifted. Because of the Berry curvature, states from different valleys split linearly in magnetic field. In the quantum Hall regime fourfold degenerate conductance plateaus reemerge. During the adiabatic transition to the quantum Hall regime, levels from one valley shift by two in quantum number with respect to the other valley, forming an interweaving pattern that can be reproduced by numerical calculations.

14.
Nano Lett ; 17(9): 5389-5393, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28806088

RESUMO

At high magnetic fields the conductance of graphene is governed by the half-integer quantum Hall effect. By local electrostatic gating a p-n junction perpendicular to the graphene edges can be formed, along which quantum Hall channels copropagate. It has been predicted by Tworzidlo and co-workers that if only the lowest Landau level is filled on both sides of the junction, the conductance is determined by the valley (isospin) polarization at the edges and by the width of the flake. This effect remained hidden so far due to scattering between the channels copropagating along the p-n interface (equilibration). Here we investigate p-n junctions in encapsulated graphene with a movable p-n interface with which we are able to probe the edge-configuration of graphene flakes. We observe large quantum conductance oscillations on the order of e2/h which solely depend on the p-n junction position providing the first signature of isospin-defined conductance. Our experiments are underlined by quantum transport calculations.

15.
Nano Lett ; 17(1): 328-333, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27960257

RESUMO

While Fabry-Pérot (FP) resonances and Moiré superlattices are intensively studied in graphene on hexagonal boron nitride (hBN), the two effects have not been discussed in their coexistence. Here we investigate the FP oscillations in a ballistic pnp-junctions in the presence and absence of a Moiré superlattice. First, we address the effect of the smoothness of the confining potential on the visibility of the FP resonances and carefully map the evolution of the FP cavity size as a function of densities inside and outside the cavity in the absence of a superlattice, when the cavity is bound by regular pn-junctions. Using a sample with a Moiré superlattice, we next show that an FP cavity can also be formed by interfaces that mimic a pn-junction but are defined through a satellite Dirac point due to the superlattice. We carefully analyze the FP resonances, which can provide insight into the band-reconstruction due to the superlattice.

16.
Nano Lett ; 16(11): 6988-6993, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27704863

RESUMO

We explore the potential of bilayer graphene as a cryogenic microwave photodetector by studying the microwave absorption in fully suspended clean bilayer graphene p-n junctions in the frequency range of 1-5 GHz at a temperature of 8 K. We observe a distinct photocurrent signal if the device is gated into the p-n regime, while there is almost no signal for unipolar doping in either the n-n or p-p regimes. Most surprisingly, the photocurrent strongly peaks when one side of the junction is gated to the Dirac point (charge-neutrality point CNP), while the other remains in a highly doped state. This is different to previous results where optical radiation was used. We propose a new mechanism based on the phototermal effect explaining the large signal. It requires contact doping and a distinctly different transport mechanism on both sides: one side of graphene is ballistic and the other diffusive. By engineering partially diffusive and partially ballistic devices, the photocurrent can drastically be enhanced.

17.
Nano Lett ; 15(9): 5819-25, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26280622

RESUMO

In graphene, the extremely fast charge carriers can be controlled by electron-optical elements, such as waveguides, in which the transmissivity is tuned by the wavelength. In this work, charge carriers are guided in a suspended ballistic few-mode graphene channel, defined by electrostatic gating. By depleting the channel, a reduction of mode number and steps in the conductance are observed, until the channel is completely emptied. The measurements are supported by tight-binding transport calculations including the full electrostatics of the sample.

18.
Phys Rev Lett ; 114(3): 036601, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25659011

RESUMO

Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can be captured by simulations using "theoretical artificial graphene." To prove this, we first derive a simple condition, along with its restrictions, to achieve band structure invariance for a scalable graphene lattice. We then present transport measurements for an ultraclean suspended single-layer graphene pn junction device, where ballistic transport features from complex Fabry-Pérot interference (at zero magnetic field) to the quantum Hall effect (at unusually low field) are observed and are well reproduced by transport simulations based on properly scaled single-particle tight-binding models. Our findings indicate that transport simulations for graphene can be efficiently performed with a strongly reduced number of atomic sites, allowing for reliable predictions for electric properties of complex graphene devices. We demonstrate the capability of the model by applying it to predict so-far unexplored gate-defined conductance quantization in single-layer graphene.

19.
ACS Appl Nano Mater ; 7(4): 3854-3860, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38420184

RESUMO

Focused-electron-beam-induced deposition is a promising technique for patterning nanomagnets in a single step. We fabricate cobalt nanomagnets in such a process and characterize their content, saturation magnetization, and stray magnetic field profiles by using a combination of transmission electron microscopy and scanning nitrogen-vacancy (NV) magnetometry. We find agreement between the measured stray field profiles and saturation magnetization with micromagnetic simulations. We further characterize magnetic domains and grainy stray magnetic fields in the nanomagnets and their halo side-deposits. This work may aid in the evaluation of Co nanomagnets produced through focused electron-beam-induced deposition for applications in spin qubits, magnetic field sensing, and magnetic logic.

20.
Npj Spintron ; 2(1): 14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883426

RESUMO

Magnetic random access memory (MRAM) is a leading emergent memory technology that is poised to replace current non-volatile memory technologies such as eFlash. However, controlling and improving distributions of device properties becomes a key enabler of new applications at this stage of technology development. Here, we introduce a non-contact metrology technique deploying scanning NV magnetometry (SNVM) to investigate MRAM performance at the individual bit level. We demonstrate magnetic reversal characterization in individual, <60 nm-sized bits, to extract key magnetic properties, thermal stability, and switching statistics, and thereby gauge bit-to-bit uniformity. We showcase the performance of our method by benchmarking two distinct bit etching processes immediately after pattern formation. In contrast to ensemble averaging methods such as perpendicular magneto-optical Kerr effect, we show that it is possible to identify out of distribution (tail-bits) bits that seem associated to the edges of the array, enabling failure analysis of tail bits. Our findings highlight the potential of nanoscale quantum sensing of MRAM devices for early-stage screening in the processing line, paving the way for future incorporation of this nanoscale characterization tool in the semiconductor industry.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa