Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Anal Chem ; 95(49): 18039-18045, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38047498

RESUMO

α-Synuclein is an intrinsically disordered protein that plays a critical role in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Proteomics studies of human brain samples have associated the modification of the O-linked N-acetyl-glucosamine (O-GlcNAc) to several synucleinopathies; in particular, the position of the O-GlcNAc can regulate protein aggregation and subsequent cell toxicity. There is a need for site specific O-GlcNAc α-synuclein screening tools to direct better therapeutic strategies. In the present work, for the first time, the potential of fast, high-resolution trapped ion mobility spectrometry (TIMS) preseparation in tandem with mass spectrometry assisted by an electromagnetostatic (EMS) cell, capable of electron capture dissociation (ECD), and ultraviolet photodissociation (213 nm UVPD) is illustrated for the characterization of α-synuclein positional glycoforms: T72, T75, T81, and S87 modified with a single O-GlcNAc. Top-down 213 nm UVPD and ECD MS/MS experiments of the intact proteoforms showed specific product ions for each α-synuclein glycoforms associated with the O-GlcNAc position with a sequence coverage of ∼68 and ∼82%, respectively. TIMS-MS profiles of α-synuclein and the four glycoforms exhibited large structural heterogeneity and signature patterns across the 8+-15+ charge state distribution; however, while the α-synuclein positional glycoforms showed signature mobility profiles, they were only partially separated in the mobility domain. Moreover, a middle-down approach based on the Val40-Phe94 (55 residues) chymotrypsin proteolytic product using tandem TIMS-q-ECD-TOF MS/MS permitted the separation of the parent positional isomeric glycoforms. The ECD fragmentation of the ion mobility and m/z separated isomeric Val40-Phe94 proteolytic peptides with single O-GlcNAc in the T72, T75, T81, and S87 positions provided the O-GlcNAc confirmation and positional assignment with a sequence coverage of ∼80%. This method enables the high-throughput screening of positional glycoforms and further enhances the structural mass spectrometry toolbox with fast, high-resolution mobility separations and 213 nm UVPD and ECD fragmentation capabilities.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Espectrometria de Massas em Tandem/métodos , Doença de Parkinson/metabolismo , Peptídeos/metabolismo , Proteólise , Peptídeo Hidrolases/metabolismo
2.
Anal Chem ; 94(44): 15377-15385, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36282112

RESUMO

Post-translational modifications (PTMs) on intact histones play a major role in regulating chromatin dynamics and influence biological processes such as DNA transcription, replication, and repair. The nature and position of each histone PTM is crucial to decipher how this information is translated into biological response. In the present work, the potential of a novel tandem top-"double-down" approach─ultraviolet photodissociation followed by mobility and mass-selected electron capture dissociation and mass spectrometry (UVPD-TIMS-q-ECD-ToF MS/MS)─is illustrated for the characterization of HeLa derived intact histone H4 proteoforms. The comparison between q-ECD-ToF MS/MS spectra and traditional Fourier-transform-ion cyclotron resonance-ECD MS/MS spectra of a H4 standard showed a similar sequence coverage (∼75%) with significant faster data acquisition in the ToF MS/MS platform (∼3 vs ∼15 min). Multiple mass shifts (e.g., 14 and 42 Da) were observed for the HeLa derived H4 proteoforms for which the top-down UVPD and ECD fragmentation analysis were consistent in detecting the presence of acetylated PTMs at the N-terminus and Lys5, Lys8, Lys12, and Lys16 residues, as well as methylated, dimethylated, and trimethylated PTMs at the Lys20 residue with a high sequence coverage (∼90%). The presented top-down results are in good agreement with bottom-up TIMS ToF MS/MS experiments and allowed for additional description of PTMs at the N-terminus. The integration of a 213 nm UV laser in the present platform allowed for UVPD events prior to the ion mobility-mass precursor separation for collision-induced dissociation (CID)/ECD-ToF MS. Selected c305+ UVPD fragments, from different H4 proteoforms (e.g., Ac + Me2, 2Ac + Me2 and 3Ac + Me2), exhibited multiple IMS bands for which similar CID/ECD fragmentation patterns per IMS band pointed toward the presence of conformers, adopting the same PTM distribution, with a clear assignment of the PTM localization for each of the c305+ UVPD fragment H4 proteoforms. These results were consistent with the biological "zip" model, where acetylation proceeds in the Lys16 to Lys5 direction. This novel platform further enhances the structural toolbox with alternative fragmentation mechanisms (UVPD, CID, and ECD) in tandem with fast, high-resolution mobility separations and shows great promise for global proteoform analysis.


Assuntos
Histonas , Espectrometria de Massas em Tandem , Humanos , Histonas/química , Espectrometria de Massas em Tandem/métodos , Elétrons , Processamento de Proteína Pós-Traducional , Análise de Fourier
3.
Analyst ; 147(11): 2317-2337, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35521797

RESUMO

Ion mobility spectrometry/mass spectrometry (IMS/MS) is widely used to study various levels of protein structure. Here, we review the current state of affairs in tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS). Two different tTIMS/MS instruments are discussed in detail: the first tTIMS/MS instrument, constructed from coaxially aligning two TIMS devices; and an orthogonal tTIMS/MS configuration that comprises an ion trap for irradiation of ions with UV photons. We discuss the various workflows the two tTIMS/MS setups offer and how these can be used to study primary, tertiary, and quaternary structures of protein systems. We also discuss, from a more fundamental perspective, the processes that lead to denaturation of protein systems in tTIMS/MS and how to soften the measurement so that biologically meaningful structures can be characterised with tTIMS/MS. We emphasize the concepts underlying tTIMS/MS to underscore the opportunities tandem-ion mobility spectrometry methods offer for investigating heterogeneous samples.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Espectrometria de Mobilidade Iônica/métodos , Íons/química , Proteínas , Espectrometria de Massas em Tandem/métodos
4.
Anal Chem ; 93(13): 5513-5520, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751887

RESUMO

Native mass spectrometry (nMS), particularly in conjunction with gas-phase ion mobility spectrometry measurements, has proven useful as a structural biology tool for evaluating the stoichiometry, conformation, and topology of protein complexes. Here, we demonstrate the combination of trapped ion mobility spectrometry (TIMS) and surface-induced dissociation (SID) on a Bruker SolariX XR 15 T FT-ICR mass spectrometer for the structural analysis of protein complexes. We successfully performed SID on mobility-selected protein complexes, including the streptavidin tetramer and cholera toxin B with bound ligands. Additionally, TIMS-SID was employed on a mixture of the peptides desArg1 and desArg9 bradykinin to mobility-separate and identify the individual peptides. Importantly, results show that native-like conformations can be maintained throughout the TIMS analysis. The TIMS-SID spectra are analogous to SID spectra acquired using quadrupole mass selection, indicating little measurable, if any, structural rearrangement during mobility selection. Mobility parking was used on the ion or mobility of interest and 50-200 SID mass spectra were averaged. High-quality TIMS-SID spectra were acquired over a period of 2-10 min, comparable to or slightly longer than SID coupled with ion mobility on various instrument platforms in our laboratory. The ultrahigh resolving power of the 15 T FT-ICR allowed for the identification and relative quantification of overlapping SID fragments with the same nominal m/z based on isotope patterns, and it shows promise as a platform to probe small mass differences, such as protein/ligand binding or post-translational modifications. These results represent the potential of TIMS-SID-MS for the analysis of both protein complexes and peptides.


Assuntos
Espectrometria de Mobilidade Iônica , Proteínas , Espectrometria de Massas , Peptídeos , Estreptavidina
5.
Anal Chem ; 93(5): 2933-2941, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33492949

RESUMO

The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, ß clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with <0.6% relative standard deviation (RSD)).


Assuntos
Espectrometria de Mobilidade Iônica , Proteínas , Íons , Espectrometria de Massas , Ubiquitina
6.
Rapid Commun Mass Spectrom ; 35(22): e9192, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34498312

RESUMO

RATIONALE: Tandem-ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem-ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes. METHODS: Here, we describe the coupling of the separation capabilities of tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis. RESULTS: We establish the feasibility of dissociating intact proteins by UV irradiation at 213 nm between the two TIMS devices in tTIMS/MS and at pressure conditions compatible with ion mobility spectrometry (2-3 mbar). We validate that the fragments produced by UVPD under these conditions result from a radical-based mechanism in accordance with prior literature on UVPD. The data suggest stabilization of fragment ions produced from UVPD by collisional cooling due to the elevated pressures used here ("UVnoD2"), which otherwise do not survive to detection. The data account for a sequence coverage for the protein ubiquitin comparable to recent reports, demonstrating the analytical utility of our instrument in mobility-separating fragment ions produced from UVPD. CONCLUSIONS: The data demonstrate that UVPD carried out at elevated pressures of 2-3 mbar yields extensive fragment ions rich in information about the protein and that their exhaustive analysis requires IMS separation post-UVPD. Therefore, because UVPD and tTIMS/MS each have been shown to be valuable techniques on their own merit in proteomics, our contribution here underscores the potential of combining tTIMS/MS with UVPD for structural proteomics.

7.
Analyst ; 146(13): 4161-4171, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34047731

RESUMO

Molecular characterization of compounds present in highly complex mixtures such as petroleum is proving to be one of the main analytical challenges. Heavy fractions, such as asphaltenes, exhibit immense molecular and isomeric complexity. Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with its unequalled resolving power, mass accuracy and dynamic range can address the isobaric complexity. Nevertheless, isomers remain largely inaccessible. Therefore, another dimension of separation is required. Recently, ion mobility mass spectrometry has revealed great potential for isomer description. In this study, the combination of trapped ion mobility and Fourier transform ion cyclotron resonance mass spectrometry (TIMS-FTICR) is used to obtain information on the structural features and isomeric diversity of vanadium petroporphyrins present in heavy petroleum fractions. The ion mobility spectra provided information on the isomeric diversity of the different classes of porphyrins. The determination of the collision cross section (CCS) from the peak apex allows us to hypothesize about the structural aspects of the petroleum molecules. In addition, the ion mobility signal full width at half maximum (FWHM) was used as a measure for isomeric diversity. Finally, theoretical CCS determinations were conducted first on core structures and then on alkylated petroporphyrins taking advantage of the linear correlation between the CCS and the alkylation level. This allowed the proposal of putative structures in agreement with the experimental results. The authors believe that the presented workflow will be useful for the structural prediction of real unknowns in highly complex mixtures.

8.
Anal Chem ; 92(19): 13192-13201, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32845134

RESUMO

Gas-phase ion/ion reactions have been enabled on a commercial dual source, hybrid QhFT-ICR mass spectrometer for use during imaging mass spectrometry experiments. These reactions allow for the transformation of the ion type most readily generated from the tissue surface to an ion type that gives improved chemical structural information upon tandem mass spectrometry (MS/MS) without manipulating the tissue sample. This process is demonstrated via the charge inversion reaction of phosphatidylcholine (PC) lipid cations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) with 1,4-phenylenedipropionic acid (PDPA) reagent dianions generated via electrospray ionization (ESI). Collision-induced dissociation (CID) of the resulting demethylated PC product anions allows for the determination of the lipid fatty acyl tail identities and positions, which is not possible via CID of the precursor lipid cations. The abundance of lipid isomers revealed by this workflow is found to vary significantly in different regions of the brain. As each isoform may have a unique cellular function, these results underscore the importance of accurately separating and identifying the many isobaric and isomeric lipids and metabolites that can complicate image interpretation and spectral analysis.


Assuntos
Fosfatidilcolinas/análise , Animais , Encéfalo , Gases/química , Íons/química , Espectrometria de Massas , Estrutura Molecular , Ratos , Estereoisomerismo
9.
Anal Chem ; 92(19): 13211-13220, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32865981

RESUMO

Ion mobility-mass spectrometry (IM-MS) has become a powerful tool for glycan structural characterization due to its ability to separate isomers and provide collision cross section (CCS) values that facilitate structural assignment. However, IM-based isomer analysis may be complicated by the presence of multiple gas-phase conformations of a single structure that not only increases difficulty in isomer separation but can also introduce the possibility for misinterpretation of conformers as isomers. Here, the ion mobility behavior of several sets of isomeric glycans, analyzed as their permethylated derivatives, in both nonreduced and reduced forms, was investigated by gated-trapped ion mobility spectrometry (G-TIMS). Notably, reducing-end reduction, commonly performed to remove anomerism-induced chromatographic peak splitting, did not eliminate the conformational heterogeneity of permethylated glycans in the gas phase. At a mobility resolving power of ∼100, 14 out of 22 structures showed more than one conformation. These results highlight the need to use IMS devices with high mobility resolving power for better separation of isomers and to acquire additional structural information that can differentiate isomers from conformers. Online electronic excitation dissociation (EED) MS/MS analysis of isomeric glycan mixtures following G-TIMS separation showed that EED can generate isomer-specific fragments while producing nearly identical tandem mass spectra for conformers, thus allowing confident identification of isomers with minimal evidence of any ambiguity resulting from the presence of conformers. G-TIMS EED MS/MS analysis of N-linked glycans released from ovalbumin revealed that several mobility features previously thought to arise from isomeric structures were conformers of a single structure. Finally, analysis of ovalbumin N-glycans from different sources showed that the G-TIMS EED MS/MS approach can accurately determine the batch-to-batch variations in glycosylation profiles at the isomer level, with confident assignment of each isomeric structure.


Assuntos
Polissacarídeos/análise , Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem
10.
Anal Chem ; 92(6): 4459-4467, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083467

RESUMO

Glycoproteins play a central role in many biological processes including disease mechanisms. Nevertheless, because glycoproteins are heterogeneous entities, it remains unclear how glycosylation modulates the protein structure and function. Here, we assess the ability of tandem-trapped ion mobility spectrometry-mass spectrometry (tandem-TIMS/MS) to characterize the structure and sequence of the homotetrameric glycoprotein avidin. We show that (1) tandem-TIMS/MS retains native-like avidin tetramers with deeply buried solvent particles; (2) applying high activation voltages in the interface of tandem-TIMS results in collision-induced dissociation (CID) of avidin tetramers into compact monomers, dimers, and trimers with cross sections consistent with X-ray structures and reports from surface-induced dissociation (SID); (3) avidin oligomers are best described as heterogeneous ensembles with (essentially) random combinations of monomer glycoforms; (4) native top-down sequence analysis of the avidin tetramer is possible by CID in tandem-TIMS. Overall, our results demonstrate that tandem-TIMS/MS has the potential to correlate individual proteoforms to variations in protein structure.


Assuntos
Avidina/análise , Espectrometria de Mobilidade Iônica , Conformação Proteica , Espectrometria de Massas em Tandem
11.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707468

RESUMO

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

12.
Anal Chem ; 91(4): 2994-3001, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30649866

RESUMO

Glycosaminoglycans (GAGs) play vital roles in many biological processes and are naturally present as complex mixtures of polysaccharides with tremendous structural heterogeneity, including many structural isomers. Mass spectrometric analysis of GAG isomers, in particular highly sulfated heparin (Hep) and heparan sulfate (HS), is challenging because of their structural similarity and facile sulfo losses during analysis. Herein, we show that highly sulfated Hep/HS isomers may be resolved by gated-trapped ion mobility spectrometry (gated-TIMS) with negligible sulfo losses. Subsequent negative electron transfer dissociation (NETD) tandem mass spectrometry (MS/MS) analysis of TIMS-separated Hep/HS isomers generated extensive glycosidic and cross-ring fragments for confident isomer differentiation and structure elucidation. The high mobility resolution and preservation of labile sulfo modifications afforded by gated-TIMS MS analysis also allowed relative quantification of highly sulfated heparin isomers. These results show that the gated-TIMS-NETD MS/MS approach is useful for both qualitative and quantitative analysis of highly sulfated Hep/HS compounds in a manner not possible with other techniques.


Assuntos
Glicosaminoglicanos/análise , Sulfatos/análise , Configuração de Carboidratos , Transporte de Elétrons , Espectrometria de Mobilidade Iônica , Estereoisomerismo , Espectrometria de Massas em Tandem
13.
Rapid Commun Mass Spectrom ; 33(5): 399-404, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30421840

RESUMO

RATIONALE: The molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas-phase modifiers on biomolecules characterized using ion mobility techniques. METHODS: The effect of solution additives and gas-phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.g., 100-500 ms) using nanoelectrospray ionization coupled to trapped ion mobility spectrometry with detection by time-of-flight mass spectrometry. Organic compounds used as additives/modifiers (methanol, acetonitrile, acetone) were either added to the aqueous protein solution before ionization or added to the ion mobility bath gas by nebulization. RESULTS: Changes in the mobility profiles are observed depending on the starting solution composition (i.e., in aqueous solution at neutral pH or in the presence of organic content: methanol, acetone, or acetonitrile) and the protein. In the presence of gas-phase modifiers (i.e., N2 doped with methanol, acetone, or acetonitrile), a shift in the mobility profiles driven by the gas-modifier mass and size and changes in the relative abundances and number of IMS bands are observed. CONCLUSIONS: We attribute the observed changes in the mobility profiles in the presence of gas-phase modifiers to a clustering/declustering mechanism by which organic molecules adsorb to the protein ion surface and lower energetic barriers for interconversion between conformational states, thus redefining the free energy landscape and equilibria between conformers. These structural biology experiments open new avenues for manipulation and interrogation of biomolecules in the gas phase with the potential to emulate a large suite of solution conditions, ultimately including conditions that more accurately reflect a variety of intracellular environments.


Assuntos
Citocromos c/química , Espectrometria de Mobilidade Iônica/métodos , Mioglobina/química , Solventes/química , Acetona/química , Acetonitrilas/química , Animais , Bovinos , Gases/química , Metanol/química , Conformação Proteica
14.
Anal Chem ; 90(4): 2446-2450, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29376337

RESUMO

In this work, nonlinear, stepping analytical mobility scan functions are implemented to increase the analytical separation and duty cycle during tandem Trapped Ion Mobility Spectrometry and FT-ICR MS operation. The differences between linear and stepping scan functions are described based on length of analysis, mobility scan rate, signal-to-noise, and mobility resolving power. Results showed that for the linear mobility scan function only a small fraction of the scan is sampled, resulting in the lowest duty cycle 0.5% and longest experiment times. Implementing nonlinear targeted scan functions for analysis of known mobilities resulted in increased duty cycle (0.85%) and resolving powers (R up to 300) with a 6-fold reduction in time from 30 to 5 min. For broad range characterization, a nonlinear mobility stepping scan function provided the best sensitivity, resolving power, duty cycle (4%), and points per peak. The applicability of nonlinear mobility scan functions for the analysis of complex mixtures is illustrated for the case of a direct infusion of a MCF-7 breast cancer cell digest, where isobaric peptides (e.g., DFTPAELR and TTILQSTGK) were separated in the mobility domain (RIMS: 110) and identified based on their CCS, accurate mass (RMS: 550k), and tandem MS using IRMPD in the ICR cell.

15.
Rapid Commun Mass Spectrom ; 32(15): 1287-1295, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29756663

RESUMO

RATIONALE: There is a need for fast, post-ionization separation during the analysis of complex mixtures. In this study, we evaluate the use of a high-resolution mobility analyzer with high-resolution and ultrahigh-resolution mass spectrometry for unsupervised molecular feature detection. Goals include the study of the reproducibility of trapped ion mobility spectrometry (TIMS) across platforms, applicability range, and potential challenges during routine analysis. METHODS: A TIMS analyzer was coupled to time-of-flight mass spectrometry (TOF MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) instruments for the analysis of singly charged species in the m/z 150-800 range of a complex mixture (Suwannee River Fulvic Acid Standard). Molecular features were detected using an unsupervised algorithm based on chemical formula and IMS profiles. RESULTS: TIMS-TOF MS and TIMS-FT-ICR MS analysis provided 4950 and 7760 m/z signals, 1430 and 3050 formulas using the general Cx Hy N0-3 O0-19 S0-1 composition, and 7600 and 22 350 [m/z; chemical formula; K; CCS] features, respectively. CONCLUSIONS: TIMS coupled to TOF MS and FT-ICR MS showed similar performance and high reproducibility. For the analysis of complex mixtures, both platforms were able to capture the major trends and characteristics; however, as the chemical complexity at the level of nominal mass increases with m/z (m/z >300-350), only TIMS-FT-ICR MS was able to report the lower abundance compositional trends.

16.
Analyst ; 143(10): 2249-2258, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29594263

RESUMO

There is currently a strong interest in the use of ion mobility spectrometry-mass spectrometry (IMS-MS) instrumentation for structural biology. In these applications, momentum transfer cross sections derived from IMS-MS measurements are used to reconstruct the three-dimensional analyte structure. Recent reports indicate that additional structural information can be extracted from measuring changes in cross sections in response to changes of the analyte structure. To further this approach, we constructed a tandem trapped IMS analyser (TIMS-TIMS) and incorporated it in a QqTOF mass spectrometer. TIMS-TIMS is constructed by coupling two TIMS analysers via an "interface region" composed of two apertures. We show that peptide oligomers (bradykinin) and native-like protein (ubiquitin) ions can be preserved through the course of an experiment in a TIMS-TIMS analyser. We demonstrate the ability to collisionally-activate as well as to trap mobility-selected ions, followed by subsequent mobility-analysis. In addition to inducing conformational changes, we show that we can fragment low charge states of ubiquitin at >1 mbar between the TIMS analysers with significant sequence coverage. Many fragment ions exhibit multiple features in their TIMS spectra, which means that they may not generally exist as the most stable isomer. The ability of TIMS-TIMS to dissociate mobility-selected protein ions and to measure the cross sections of their fragment ions opens new possibilities for IMS-based structure elucidation.

17.
Anal Chem ; 89(17): 8757-8765, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28742962

RESUMO

Globular proteins, such as cytochrome c (cyt c), display an organized native conformation, maintained by a hydrogen bond interaction network. In the present work, the structural interrogation of kinetically trapped intermediates of cyt c was performed by correlating the ion-neutral collision cross section (CCS) and charge state with the starting solution conditions and time after desolvation using collision induced activation (CIA), time-resolved hydrogen/deuterium back exchange (HDX) and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The high ion mobility resolving power of the TIMS analyzer allowed the identification of new ion mobility bands, yielding a total of 63 mobility bands over the +6 to +21 charge states and 20 mobility bands over the -5 to -10 charge states. Mobility selected HDX rates showed that for the same charge state, conformers with larger CCS present faster HDX rates in both positive and negative ion mode, suggesting that the charge sites and neighboring exchange sites on the accessible surface area define the exchange rate regardless of the charge state. Complementary molecular dynamic simulations permitted the generation of candidate structures and a mechanistic model of the folding transitions from native (N) to molten globule (MG) to kinetic intermediates (U) pathways. Our results suggest that cyt c major structural unfolding is associated with the distancing of the N- and C-terminal helices and subsequent solvent exposure of the hydrophobic, heme-containing cavity.


Assuntos
Citocromos c/química , Animais , Medição da Troca de Deutério , Cavalos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Conformação Proteica , Desdobramento de Proteína
18.
Environ Sci Technol ; 51(11): 5978-5988, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28457132

RESUMO

For the first time, trapped ion mobility spectrometry (TIMS) in tandem with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is applied to the analysis of the low energy water accommodated fraction (WAF) of a crude oil as a function of the exposure to light. The TIMS-FT-ICR MS analysis provided, in addition to the heteroatom series identification, new insights into the WAF isomeric complexity (e.g., [m/z; chemical formula; collision cross section] data sets) for a better evaluation of the degree of chemical and structural photoinduced transformations. Inspection of the [m/z; chemical formula; collision cross section] data sets shows that the WAF composition changes as a function of the exposure to light in the first 115 h by initial photosolubilization of HC components and their photo-oxidation up to O4-5 of mainly high double bond equivalence species (DBE > 9). The addition of high resolution TIMS (resolving power of 90-220) to ultrahigh resolution FT-ICR MS (resolving power over 400k) permitted the identification of a larger number of molecular components in a single analysis (e.g., over 47k using TIMS-MS compared to 12k by MS alone), with instances of over 6-fold increase in the number of molecular features per nominal mass due to the WAF isomeric complexity. This work represents a stepping stone toward a better understanding of the WAF components and highlights the need for better experimental and theoretical approaches to characterize the WAF structural diversity.


Assuntos
Petróleo , Poluentes Químicos da Água , Análise de Fourier , Íons , Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Água
19.
Anal Chem ; 88(7): 3440-3, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26959868

RESUMO

One of the major challenges in structural characterization of oligosaccharides is the presence of many structural isomers in most naturally occurring glycan mixtures. Although ion mobility spectrometry (IMS) has shown great promise in glycan isomer separation, conventional IMS separation occurs on the millisecond time scale, largely restricting its implementation to fast time-of-flight (TOF) analyzers which often lack the capability to perform electron activated dissociation (ExD) tandem MS analysis and the resolving power needed to resolve isobaric fragments. The recent development of trapped ion mobility spectrometry (TIMS) provides a promising new tool that offers high mobility resolution and compatibility with high-performance Fourier transform ion cyclotron resonance (FTICR) mass spectrometers when operated under the selected accumulation-TIMS (SA-TIMS) mode. Here, we present our initial results on the application of SA-TIMS-ExD-FTICR MS to the separation and identification of glycan linkage isomers.


Assuntos
Polissacarídeos/análise , Polissacarídeos/química , Análise de Fourier , Isomerismo , Espectrometria de Massas , Polissacarídeos/isolamento & purificação
20.
Phys Chem Chem Phys ; 18(38): 26691-26702, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711445

RESUMO

In the present work, the conformational dynamics and folding pathways of i-motif DNA were studied in solution and in the gas-phase as a function of the solution pH conditions using circular dichroism (CD), photoacoustic calorimetry analysis (PAC), trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), and molecular dynamics (MD). Solution studies showed at thermodynamic equilibrium the existence of a two-state folding mechanism, whereas during the pH = 7.0 → 4.5 transition a fast and slow phase (ΔHfast + ΔHslow = 43 ± 7 kcal mol-1) with a volume change associated with the formation of hemiprotonated cytosine base pairs and concomitant collapse of the i-motif oligonucleotide into a compact conformation were observed. TIMS-MS experiments showed that gas-phase, kinetically trapped i-motif DNA intermediates produced by nanoESI are preserved, with relative abundances depending on the solution pH conditions. In particular, a folded i-motif DNA structure was observed in nanoESI-TIMS-MS for low charge states in both positive and negative ion mode (e.g., z = ±3 to ±5) at low pH conditions. As solution pH increases, the cytosine neutralization leads to the loss of cytosine-cytosine+ (C·CH+) base pairing in the CCC strands and in those conditions we observe partially unfolded i-motif DNA conformations in nanoESI-TIMS-MS for higher charge states (e.g., z = -6 to -9). Collisional induced activation prior to TIMS-MS showed the existence of multiple local free energy minima, associated with the i-motif DNA unfolding at z = -6 charge state. For the first time, candidate gas-phase structures are proposed based on mobility measurements of the i-motif DNA unfolding pathway. Moreover, the inspection of partially unfolded i-motif DNA structures (z = -7 and z = -8 charge states) showed that the presence of inner cations may or may not induce conformational changes in the gas-phase. For example, incorporation of ammonium adducts does not lead to major conformational changes while sodium adducts may lead to the formation of sodium mediated bonds between two negatively charged sides inducing the stabilization towards more compact structures in new local, free energy minima in the gas-phase.


Assuntos
DNA/química , Calorimetria , Dicroísmo Circular , Citosina/química , DNA/metabolismo , Concentração de Íons de Hidrogênio , Espectrometria de Mobilidade Iônica , Cinética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Espectrometria de Massas por Ionização por Electrospray , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa