RESUMO
While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.
Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Síndrome de Prader-Willi , Adolescente , Humanos , Transtorno do Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicações , Transtornos do Neurodesenvolvimento/genética , Obesidade/complicações , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/genética , ProteínasRESUMO
Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.
Assuntos
Estruturas Embrionárias , Fatores de Transcrição Forkhead , Nefropatias , Rim , Néfrons , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Adulto , Animais , Humanos , Camundongos , Estudo de Associação Genômica Ampla , Rim/anormalidades , Rim/embriologia , Nefropatias/genética , Camundongos Knockout , Néfrons/embriologia , Fatores de Transcrição/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismoRESUMO
BACKGROUND: TASP1 encodes an endopeptidase activating histone methyltransferases of the KMT2 family. Homozygous loss-of-function variants in TASP1 have recently been associated with Suleiman-El-Hattab syndrome. We report six individuals with Suleiman-El-Hattab syndrome and provide functional characterization of this novel histone modification disorder in a multi-omics approach. METHODS: Chromosomal microarray/exome sequencing in all individuals. Western blotting from fibroblasts in two individuals. RNA sequencing and proteomics from fibroblasts in one individual. Methylome analysis from blood in two individuals. Knock-out of tasp1 orthologue in zebrafish and phenotyping. RESULTS: All individuals had biallelic TASP1 loss-of-function variants and a phenotype including developmental delay, multiple congenital anomalies (including cardiovascular and posterior fossa malformations), a distinct facial appearance and happy demeanor. Western blot revealed absence of TASP1. RNA sequencing/proteomics showed HOX gene downregulation (HOXA4, HOXA7, HOXA1 and HOXB2) and dysregulation of transcription factor TFIIA. A distinct methylation profile intermediate between control and Kabuki syndrome (KMT2D) profiles could be produced. Zebrafish tasp1 knock-out revealed smaller head size and abnormal cranial cartilage formation in tasp1 crispants. CONCLUSION: This work further delineates Suleiman-El-Hattab syndrome, a recognizable neurodevelopmental syndrome. Possible downstream mechanisms of TASP1 deficiency include perturbed HOX gene expression and dysregulated TFIIA complex. Methylation pattern suggests that Suleiman-El-Hattab syndrome can be categorized into the group of histone modification disorders including Wiedemann-Steiner and Kabuki syndrome.
Assuntos
Código das Histonas , Peixe-Zebra , Anormalidades Múltiplas , Animais , Endopeptidases/genética , Face/anormalidades , Doenças Hematológicas , Histona Metiltransferases/genética , Fenótipo , Fator de Transcrição TFIIA/genética , Doenças Vestibulares , Peixe-Zebra/genéticaRESUMO
Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.
Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Humanos , Mutação , Colágeno Tipo IV/genética , Autoantígenos/genética , Nefrite Hereditária/diagnóstico , Hematúria/genética , Proteinúria/genéticaRESUMO
The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.
Assuntos
Actinas/metabolismo , Variação Genética , Proteínas dos Microfilamentos/genética , Síndrome Nefrótica/genética , Proteínas rho de Ligação ao GTP/genética , Alelos , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Citoplasma/metabolismo , Forminas/metabolismo , Humanos , Rim/metabolismo , Glomérulos Renais/metabolismo , Mutação de Sentido Incorreto , Podócitos/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Sequenciamento do Exoma , XenopusRESUMO
In two independent ongoing next-generation sequencing projects for individuals with holoprosencephaly and individuals with disorders of sex development, and through international research collaboration, we identified twelve individuals with de novo loss-of-function (LoF) variants in protein phosphatase 1, regulatory subunit 12a (PPP1R12A), an important developmental gene involved in cell migration, adhesion, and morphogenesis. This gene has not been previously reported in association with human disease, and it has intolerance to LoF as illustrated by a very low observed-to-expected ratio of LoF variants in gnomAD. Of the twelve individuals, midline brain malformations were found in five, urogenital anomalies in nine, and a combination of both phenotypes in two. Other congenital anomalies identified included omphalocele, jejunal, and ileal atresia with aberrant mesenteric blood supply, and syndactyly. Six individuals had stop gain variants, five had a deletion or duplication resulting in a frameshift, and one had a canonical splice acceptor site loss. Murine and human in situ hybridization and immunostaining revealed PPP1R12A expression in the prosencephalic neural folds and protein localization in the lower urinary tract at critical periods for forebrain division and urogenital development. Based on these clinical and molecular findings, we propose the association of PPP1R12A pathogenic variants with a congenital malformations syndrome affecting the embryogenesis of the brain and genitourinary systems and including disorders of sex development.
Assuntos
Anormalidades Múltiplas/patologia , Transtornos do Desenvolvimento Sexual/patologia , Holoprosencefalia/patologia , Mutação , Fosfatase de Miosina-de-Cadeia-Leve/genética , Anormalidades Urogenitais/patologia , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Transtornos do Desenvolvimento Sexual/genética , Feminino , Idade Gestacional , Holoprosencefalia/genética , Humanos , Masculino , Fenótipo , Gravidez , Anormalidades Urogenitais/genéticaRESUMO
Primary Coenzyme Q10 (CoQ10) deficiency is an ultra-rare disorder caused by defects in genes involved in CoQ10 biosynthesis leading to multidrug-resistant nephrotic syndrome as the hallmark kidney manifestation. Promising early results have been reported anecdotally with oral CoQ10 supplementation. However, the long-term efficacy and optimal prescription remain to be established. In a global effort, we collected and analyzed information from 116 patients who received CoQ10 supplements for primary CoQ10 deficiency due to biallelic pathogenic variants in either the COQ2, COQ6 or COQ8B genes. Median duration of follow up on treatment was two years. The effect of treatment on proteinuria was assessed, and kidney survival was analyzed in 41 patients younger than 18 years with chronic kidney disease stage 1-4 at the start of treatment compared with that of an untreated cohort matched by genotype, age, kidney function, and proteinuria. CoQ10 supplementation was associated with a substantial and significant sustained reduction of proteinuria by 88% at 12 months. Complete remission of proteinuria was more frequently observed in COQ6 disease. CoQ10 supplementation led to significantly better preservation of kidney function (5-year kidney failure-free survival 62% vs. 19%) with an improvement in general condition and neurological manifestations. Side effects of treatment were uncommon and mild. Thus, our findings indicate that all patients diagnosed with primary CoQ10 deficiency should receive early and life-long CoQ10 supplementation to decelerate the progression of kidney disease and prevent further damage to other organs.
Assuntos
Doenças Mitocondriais , Síndrome Nefrótica , Ubiquinona , Ataxia/tratamento farmacológico , Suplementos Nutricionais , Humanos , Rim/patologia , Doenças Mitocondriais/tratamento farmacológico , Debilidade Muscular/tratamento farmacológico , Mutação , Síndrome Nefrótica/complicações , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Proteinúria/diagnóstico , Proteinúria/tratamento farmacológico , Esteroides/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ubiquinona/uso terapêuticoRESUMO
Primary Coenzyme Q10 deficiency is a rare mitochondriopathy with a wide spectrum of organ involvement, including steroid-resistant nephrotic syndrome mainly associated with disease-causing variants in the genes COQ2, COQ6 or COQ8B. We performed a systematic literature review, PodoNet, mitoNET, and CCGKDD registries queries and an online survey, collecting comprehensive clinical and genetic data of 251 patients spanning 173 published (47 updated) and 78 new cases. Kidney disease was first diagnosed at median age 1.0, 1.2 and 9.8 years in individuals with disease-causing variants in COQ2, COQ6 and COQ8B, respectively. Isolated kidney involvement at diagnosis occurred in 34% of COQ2, 10.8% of COQ6 and 70.7% of COQ8B variant individuals. Classic infantile multiorgan involvement comprised 22% of the COQ2 variant cohort while 47% of them developed neurological symptoms at median age 2.7 years. The association of steroid-resistant nephrotic syndrome and sensorineural hearing loss was confirmed as the distinctive phenotype of COQ6 variants, with hearing impairment manifesting at average age three years. None of the patients with COQ8B variants, but 50% of patients with COQ2 and COQ6 variants progressed to kidney failure by age five. At adult age, kidney survival was equally poor (20-25%) across all disorders. A number of sequence variants, including putative local founder mutations, had divergent clinical presentations, in terms of onset age, kidney and non-kidney manifestations and kidney survival. Milder kidney phenotype was present in those with biallelic truncating variants within the COQ8B variant cohort. Thus, significant intra- and inter-familial phenotype variability was observed, suggesting both genetic and non-genetic modifiers of disease severity.
Assuntos
Síndrome Nefrótica , Ataxia , Estudos de Associação Genética , Humanos , Doenças Mitocondriais , Debilidade Muscular , Mutação , Síndrome Nefrótica/diagnóstico , Esteroides , Ubiquinona/deficiênciaRESUMO
Epigenetic modifications of DNA and histone tails are essential for gene expression regulation. They play an essential role in neurodevelopment as nervous system development is a complex process requiring a dynamic pattern of gene expression. Histone methylation is one of the vital epigenetic regulators and mostly occurs on lysine residues of histones H3 and H4. Histone methylation is catalyzed by two sets of enzymes: histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). KMT2 enzymes form a distinct multi-subunit complex known as COMPASS to enhance their catalytic activity and diversify their biologic functions. Several neurodevelopmental syndromes result from defects in histone methylation which can be caused by deficiencies in histone methyltransferases and demethylases, loss of the histone methyltransferase activator TASP1, or derangements in COMPASS formation. In this review article, the molecular mechanism of histone methylation is discussed followed by summarizing clinical syndromes caused by monogenic defects in histone methylation.
Assuntos
Histonas , Lisina , Histona Desmetilases/genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/química , Lisina/genética , Lisina/metabolismo , Metilação , SíndromeRESUMO
Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Criança , Drosophila , Drosophila melanogaster , Haploinsuficiência/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genéticaRESUMO
BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEis) have evolved as a first-line therapy for delaying end-stage renal failure (ESRF) in Alport syndrome (AS). The present study tested the hypothesis of a superior nephroprotective potential of an early ACEi intervention, examining a cohort with the COL4A5 missense variant p.(Gly624Asp). METHODS: In this observational cohort study (NCT02378805), 114 individuals with the identical gene variant were explored for age at ESRF and life expectancy in correlation with treatment as endpoints. RESULTS: All 13 untreated hemizygous patients developed ESRF (mean age 48.9 ± 13.7 years), as did 3 very late treated hemizygotes (51.7 ± 4.2 years), with a mean life expectancy of 59.2 ± 9.6 years. All 28 earlier-treated [estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2] hemizygous patients were still alive and still had not reached ESRF. Therapy minimized the annual loss of their GFR, similar to the annual loss in healthy individuals. Of 65 heterozygotes, 4 untreated individuals developed ESRF at an age of 53.3 ± 20.7 years. None of the treated heterozygous females developed ESRF. CONCLUSIONS: For the first time, this study shows that in AS, early therapy in individuals with missense variants might have the potential to delay renal failure for their lifetime and thus to improve life expectancy and quality of life without the need for renal replacement therapy. Some treated patients have reached their retirement age with still-functioning kidneys, whereas their untreated relatives have reached ESRF at the same or a younger age. Thus, in children with glomerular haematuria, early testing for Alport-related gene variants could lead to timely nephroprotective intervention.
Assuntos
Falência Renal Crônica , Nefrite Hereditária , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Colágeno Tipo IV/genética , Heterozigoto , Falência Renal Crônica/genética , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Estudos Prospectivos , Qualidade de VidaRESUMO
Claudin-11, a tight junction protein, is indispensable in the formation of the radial component of myelin. Here, we report de novo stop-loss variants in the gene encoding claudin-11, CLDN11, in three unrelated individuals presenting with an early-onset spastic movement disorder, expressive speech disorder and eye abnormalities including hypermetropia. Brain MRI showed a myelin deficit with a discrepancy between T1-weighted and T2-weighted images and some progress in myelination especially involving the central and peripheral white matter. Exome sequencing identified heterozygous stop-loss variants c.622T>C, p.(*208Glnext*39) in two individuals and c.622T>G, p.(*208Gluext*39) in one individual, all occurring de novo. At the RNA level, the variant c.622T>C did not lead to a loss of expression in fibroblasts, indicating this transcript is not subject to nonsense-mediated decay and most likely translated into an extended protein. Extended claudin-11 is predicted to form an alpha helix not incorporated into the cytoplasmic membrane, possibly perturbing its interaction with intracellular proteins. Our observations suggest that stop-loss variants in CLDN11 expand the genetically heterogeneous spectrum of hypomyelinating leukodystrophies.
Assuntos
Anodontia/genética , Anodontia/patologia , Ataxia/genética , Ataxia/patologia , Encéfalo/patologia , Claudinas/genética , Hipogonadismo/genética , Hipogonadismo/patologia , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Códon de Terminação/genética , Feminino , Variação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , LinhagemRESUMO
PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
Assuntos
Anormalidades do Olho , Transtornos do Neurodesenvolvimento , Animais , Anormalidades do Olho/genética , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Receptores de Superfície Celular , Peixe-Zebra/genéticaRESUMO
PURPOSE: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority. METHODS: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC. RESULTS: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-associated missense variants. We report p.Asp724 as second mutational hotspot (4/19 cases). Genotype-phenotype correlation confirms a consistently severe phenotype in p.Arg87 patients but a more variable phenotype in p.Asp724 and other substitutions. Three individuals with milder phenotypes carry putative loss-of-function variants, which remain of unclear pathogenicity. Structural modeling predicted missense variants to disturb interactions within the WRC or impair CYFIP2 stability. Consistent with its role in WRC-mediated actin polymerization we substantiate aberrant regulation of the actin cytoskeleton in patient fibroblasts. CONCLUSION: Our study expands the clinical and molecular spectrum of CYFIP2-related neurodevelopmental disorder and provides evidence for aberrant WRC-mediated actin dynamics as contributing cellular pathomechanism.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , ConvulsõesRESUMO
Early initiation of therapy in patients with Alport syndrome (AS) slows down renal failure by many years. Genotype-phenotype correlations propose that the location and character of the individual's variant correlate with the renal outcome and any extra renal manifestations. In-depth clinical and genetic data of 60/62 children who participated in the EARLY PRO-TECT Alport trial were analyzed. Genetic variants were interpreted according to current guidelines and criteria. Genetically solved patients with X-linked inheritance were then classified according to the severity of their COL4A5 variant into less-severe, intermediate, and severe groups and disease progress was compared. Almost 90% of patients were found to carry (likely) pathogenic variants and classified as genetically solved cases. Patients in the less-severe group demonstrated a borderline significant difference in disease progress compared to those in the severe group (p = 0.05). While having only limited power according to its sample size, an obvious strength is the precise clinical and genetic data of this well ascertained cohort. As in published data differences in clinical progress were shown between patients with COL4A5 less-severe and severe variants. Therefore, clinical and segregational data are important for variant (re)classification. Genetic testing should be mandatory allowing early diagnosis and therapy of AS.
Assuntos
Colágeno Tipo IV/genética , Estudos de Associação Genética , Nefrite Hereditária/genética , Insuficiência Renal/genética , Adolescente , Criança , Pré-Escolar , Diagnóstico Precoce , Feminino , Genes Ligados ao Cromossomo X/genética , Testes Genéticos , Humanos , Lactente , Rim/patologia , Masculino , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/patologia , Nefrite Hereditária/terapia , Insuficiência Renal/diagnóstico , Insuficiência Renal/patologia , Insuficiência Renal/terapiaRESUMO
Up to 40% of neurodevelopmental disorders (NDDs) such as intellectual disability, developmental delay, autism spectrum disorder, and developmental motor abnormalities have a documented underlying monogenic defect, primarily due to de novo variants. Still, the overall burden of de novo variants as well as novel disease genes in NDDs await discovery. We performed parent-offspring trio exome sequencing in 231 individuals with NDDs. Phenotypes were compiled using human phenotype ontology terms. The overall diagnostic yield was 49.8% (n = 115/231) with de novo variants contributing to more than 80% (n = 93/115) of all solved cases. De novo variants affected 72 different-mostly constrained-genes. In addition, we identified putative pathogenic variants in 16 genes not linked to NDDs to date. Reanalysis performed in 80 initially unsolved cases revealed a definitive diagnosis in two additional cases. Our study consolidates the contribution and genetic heterogeneity of de novo variants in NDDs highlighting trio exome sequencing as effective diagnostic tool for NDDs. Besides, we illustrate the potential of a trio-approach for candidate gene discovery and the power of systematic reanalysis of unsolved cases.
Assuntos
Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Centros de Atenção Terciária , Sequenciamento do Exoma/métodos , Adulto JovemRESUMO
The DEAD/DEAH box RNA helicases are a superfamily of proteins involved in the processing and transportation of RNA within the cell. A growing literature supports this family of proteins as contributing to various types of human disorders from neurodevelopmental disorders to syndromes with multiple congenital anomalies. This article presents a cohort of nine unrelated individuals with de novo missense alterations in DDX23 (Dead-Box Helicase 23). The gene is ubiquitously expressed and functions in RNA splicing, maintenance of genome stability, and the sensing of double-stranded RNA. Our cohort of patients, gathered through GeneMatcher, exhibited features including tone abnormalities, global developmental delay, facial dysmorphism, autism spectrum disorder, and seizures. Additionally, there were a variety of other findings in the skeletal, renal, ocular, and cardiac systems. The missense alterations all occurred within a highly conserved RecA-like domain of the protein, and are located within or proximal to the DEAD box sequence. The individuals presented in this article provide evidence of a syndrome related to alterations in DDX23 characterized predominantly by atypical neurodevelopment.
Assuntos
Transtorno do Espectro Autista/genética , RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Instabilidade Genômica/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Splicing de RNA/genética , RNA de Cadeia Dupla/genética , Convulsões/complicações , Convulsões/genética , Convulsões/fisiopatologiaRESUMO
Fucosylation is essential for intercellular and intracellular recognition, cell-cell interaction, fertilization, and inflammatory processes. Only five types of congenital disorders of glycosylation (CDG) related to an impaired fucosylation have been described to date: FUT8-CDG, FCSK-CDG, POFUT1-CDG SLC35C1-CDG, and the only recently described GFUS-CDG. This review summarizes the clinical findings of all hitherto known 25 patients affected with those defects with regard to their pathophysiology and genotype. In addition, we describe five new patients with novel variants in the SLC35C1 gene. Furthermore, we discuss the efficacy of fucose therapy approaches within the different defects.
Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Fucose/uso terapêutico , Proteínas de Transporte de Monossacarídeos/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicoproteínas , Glicosilação , Humanos , Lactente , Masculino , Resultado do Tratamento , Adulto JovemRESUMO
PURPOSE: Pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause an autosomal recessive disorder with a wide range of symptoms affecting liver, skeletal system, and brain, among others. There is a continuously growing number of patients but a lack of systematic and quantitative analysis. METHODS: Individuals with biallelic variants in NBAS were recruited within an international, multicenter study, including novel and previously published patients. Clinical variables were analyzed with log-linear models and visualized by mosaic plots; facial profiles were investigated via DeepGestalt. The structure of the NBAS protein was predicted using computational methods. RESULTS: One hundred ten individuals from 97 families with biallelic pathogenic NBAS variants were identified, including 26 novel patients with 19 previously unreported variants, giving a total number of 86 variants. Protein modeling redefined the ß-propeller domain of NBAS. Based on the localization of missense variants and in-frame deletions, three clinical subgroups arise that differ significantly regarding main clinical features and are directly related to the affected region of the NBAS protein: ß-propeller (combined phenotype), Sec39 (infantile liver failure syndrome type 2/ILFS2), and C-terminal (short stature, optic atrophy, and Pelger-Huët anomaly/SOPH). CONCLUSION: We define clinical subgroups of NBAS-associated disease that can guide patient management and point to domain-specific functions of NBAS.
Assuntos
Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Proteínas de Neoplasias/genética , Alelos , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Doenças Genéticas Inatas/patologia , Humanos , Lactente , Fígado/patologia , Transplante de Fígado/efeitos adversos , Masculino , Músculo Esquelético/patologia , Mutação de Sentido Incorreto/genética , FenótipoRESUMO
RATIONALE & OBJECTIVE: Hereditary nephropathies are clinically and genetically heterogeneous disorders. For some patients, the clinical phenotype corresponds to a specific hereditary disease but genetic testing reveals that the expected genotype is not present (phenocopy). The aim of this study was to evaluate the spectrum and frequency of phenocopies identified by using exome sequencing in a cohort of patients who were clinically suspected to have hereditary kidney disorders. STUDY DESIGN: Cross-sectional cohort study. SETTING & PARTICIPANTS: 174 unrelated patients were recruited for exome sequencing and categorized into 7 disease groups according to their clinical presentation. They included autosomal dominant tubulointerstitial kidney disease, Alport syndrome, congenital anomalies of the kidney and urinary tract, ciliopathy, focal segmental glomerulosclerosis/steroid-resistant nephrotic syndrome, VACTERL association, and "other." RESULTS: A genetic diagnosis (either likely pathogenic or pathogenic variant according to the guidelines of the American College of Medical Genetics) was established using exome sequencing in 52 of 174 (30%) cases. A phenocopy was identified for 10 of the 52 exome sequencing-solved cases (19%), representing 6% of the total cohort. The most frequent phenocopies (n=5) were associated with genetic Alport syndrome presenting clinically as focal segmental glomerulosclerosis/steroid-resistant nephrotic syndrome. Strictly targeted gene panels (<25 kilobases) did not identify any of the phenocopy cases. LIMITATIONS: The spectrum of described phenocopies is small. Selection bias may have altered the diagnostic yield within disease groups in our study population. The study cohort was predominantly of non-Finnish European descent, limiting generalizability. Certain hereditary kidney diseases cannot be diagnosed by using exome sequencing (eg, MUC1-autosomal dominant tubulointerstitial kidney disease). CONCLUSIONS: Phenocopies led to the recategorization of disease and altered clinical management. This study highlights that exome sequencing can detect otherwise occult genetic heterogeneity of kidney diseases.