Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 296: 100694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895132

RESUMO

Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, ß-myosin heavy chain (ß-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike ß-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of ß-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate ß-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.


Assuntos
Miosinas Cardíacas/metabolismo , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , RNA Longo não Codificante/genética , Miosinas Cardíacas/química , Humanos , Células-Tronco Pluripotentes Induzidas , MicroRNAs/genética , Simulação de Dinâmica Molecular , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/química , Conformação Proteica
2.
J Immunol ; 192(10): 4709-17, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24729616

RESUMO

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) pose a significant threat to human health. Polymorphonuclear leukocytes (PMN) are the first responders during staphylococcal infection, but 15-50% of the initial ingested inoculum survives within the PMN phagosome and likely contributes directly or indirectly to disease pathogenesis. We hypothesize that surviving intracellular CA-MRSA undermine effective phagocyte-mediated defense by causing a decrease in macrophage uptake of PMN containing viable S. aureus and by promoting PMN lysis. In support of this hypothesis, PMN harboring viable CA-MRSA strain USA300 (PMN-SA) upregulated the "don't eat me" signal CD47, remained bound to the surface, and were inefficiently ingested by macrophages. In addition, coculture with PMN-SA altered the macrophage phenotype. Compared to macrophages fed USA300 alone, macrophages challenged with PMN-SA produced more IL-8 and less IL-1 receptor antagonist, TNF-α, activated caspase-1, and IL-1ß. Although they exhibited some features of apoptosis within 3 h following ingestion of S. aureus, including phosphatidylserine exposure and mitochondrial membrane depolarization, PMN-SA had sustained levels of proliferating cell nuclear Ag expression, absence of caspase activation, and underwent lysis within 6 h following phagocytosis. PMN lysis was dependent on receptor-interacting protein 1, suggesting that PMN-SA underwent programmed necrosis or necroptosis. These data are the first demonstration, to our knowledge, that bacteria can promote sustained expression of proliferating cell nuclear Ag and that human PMN undergo necroptosis. Together, these findings demonstrate that S. aureus surviving within PMN undermine the innate immune response and may provide insight into the pathogenesis of S. aureus disease.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Neutrófilos/imunologia , Antígeno CD47/imunologia , Caspase 1/imunologia , Técnicas de Cocultura , Feminino , Humanos , Interleucina-1beta/imunologia , Macrófagos/patologia , Masculino , Necrose/imunologia , Necrose/patologia , Neutrófilos/patologia , Fator de Necrose Tumoral alfa/imunologia
3.
PLoS Pathog ; 6(10): e1001133, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20949069

RESUMO

Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs) contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs), including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS). These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.


Assuntos
Evasão da Resposta Imune/fisiologia , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus epidermidis/imunologia , Staphylococcus epidermidis/patogenicidade , Sequência de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Hemólise/efeitos dos fármacos , Hemólise/genética , Humanos , Evasão da Resposta Imune/genética , Imunidade Celular/fisiologia , Dados de Sequência Molecular , Neutrófilos/fisiologia , Filogenia , Homologia de Sequência de Aminoácidos , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo
4.
EBioMedicine ; 85: 104304, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265417

RESUMO

BACKGROUND: MicroRNAs are non-coding RNAs that negatively regulate gene networks. Previously, we reported that systemically delivered miR-29 mimic MRG-201 reduced fibrosis in animal models, supporting the consideration of miR-29-based therapies for idiopathic pulmonary fibrosis (IPF). METHODS: We generated MRG-229, a next-generation miR-29 mimic based on MRG-201 with improved chemical stability due to additional sugar modifications and conjugation with the internalization moiety BiPPB (PDGFbetaR-specific bicyclic peptide)1. We investigated the anti-fibrotic efficacy of MRG-229 on TGF-ß1 treated human lung fibroblasts (NHLFs), human precision cut lung slices (hPCLS), and in vivo bleomycin studies; toxicology was assessed in two animal models, rats, and non-human primates. Finally, we examined miR-29b levels in a cohort of 46 and 213 patients with IPF diagnosis recruited from Yale and Nottingham Universities (Profile Cohort), respectively. FINDINGS: The peptide-conjugated MRG-229 mimic decreased expression of pro-fibrotic genes and reduced collagen production in each model. In bleomycin-treated mice, the peptide-conjugated MRG-229 mimic downregulated profibrotic gene programs at doses more than ten-fold lower than the original compound. In rats and non-human primates, the peptide-conjugated MRG-229 mimic was well tolerated at clinically relevant doses with no adverse findings observed. In human peripheral blood from IPF patients decreased miR-29 concentrations were associated with increased mortality in two cohorts potentially identified as a target population for treatment. INTERPRETATION: Collectively, our results provide support for the development of the peptide-conjugated MRG-229 mimic as a potential therapy in humans with IPF. FUNDING: This work was supported by NIH NHLBI grants UH3HL123886, R01HL127349, R01HL141852, U01HL145567.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Camundongos , Ratos , Animais , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Bleomicina , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo
5.
Nat Microbiol ; 7(1): 62-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873293

RESUMO

Swift recruitment of phagocytic leucocytes is critical in preventing infection when bacteria breach through the protective layers of the skin. According to canonical models, this occurs via an indirect process that is initiated by contact of bacteria with resident skin cells and which is independent of the pathogenic potential of the invader. Here we describe a more rapid mechanism of leucocyte recruitment to the site of intrusion of the important skin pathogen Staphylococcus aureus that is based on direct recognition of specific bacterial toxins, the phenol-soluble modulins (PSMs), by circulating leucocytes. We used a combination of intravital imaging, ear infection and skin abscess models, and in vitro gene expression studies to demonstrate that this early recruitment was dependent on the transcription factor EGR1 and contributed to the prevention of infection. Our findings refine the classical notion of the non-specific and resident cell-dependent character of the innate immune response to bacterial infection by demonstrating a pathogen-specific high-alert mechanism involving direct recruitment of immune effector cells by secreted bacterial products.


Assuntos
Toxinas Bacterianas/imunologia , Linfócitos/imunologia , Infiltração de Neutrófilos/imunologia , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Feminino , Humanos , Microscopia Intravital/métodos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/patogenicidade , Fatores de Virulência
6.
Antimicrob Agents Chemother ; 53(10): 4200-10, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19596877

RESUMO

Antimicrobial peptides (AMPs) form an important part of the innate host defense. In contrast to most AMPs, human dermcidin has an anionic net charge. To investigate whether bacteria have developed specific mechanisms of resistance to dermcidin, we screened for mutants of the leading human pathogen, Staphylococcus aureus, with altered resistance to dermcidin. To that end, we constructed a plasmid for use in mariner-based transposon mutagenesis and developed a high-throughput cell viability screening method based on luminescence. In a large screen, we did not find mutants with strongly increased susceptibility to dermcidin, indicating that S. aureus has no specific mechanism of resistance to this AMP. Furthermore, we detected a mutation in a gene of unknown function that resulted in significantly increased resistance to dermcidin. The mutant strain had an altered membrane phospholipid pattern and showed decreased binding of dermcidin to the bacterial surface, indicating that dermcidin interacts with membrane phospholipids. The mode of this interaction was direct, as shown by assays of dermcidin binding to phospholipid preparations, and specific, as the resistance to other AMPs was not affected. Our findings indicate that dermcidin has an exceptional value for the human innate host defense and lend support to the idea that it evolved to evade bacterial resistance mechanisms targeted at the cationic character of most AMPs. Moreover, they suggest that the antimicrobial activity of dermcidin is dependent on the interaction with the bacterial membrane and might thus assist with the determination of the yet unknown mode of action of this important human AMP.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosfolipídeos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Southern Blotting , Cromatografia em Camada Fina , Biologia Computacional , Citocromos c/metabolismo , Teste de Complementação Genética , Humanos , Microscopia Eletrônica de Varredura , Microscopia Imunoeletrônica , Mutagênese , Reação em Cadeia da Polimerase , Staphylococcus aureus/genética
8.
Toxicol In Vitro ; 18(6): 741-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15465638

RESUMO

Human exposure to toxic metals and metalloids in the environment seldom occurs from a single pure compound. Most environmental exposure profiles are heterogeneous with co-exposure occurring coincident with multiple toxic metal species. This co-exposure to metals and metalloids in complex mixtures can result in a synergistic, additive or even depletive toxic response. The complexity of interactions presented by metal mixtures presents a need for convenient and sensitive methods to determine potential toxic responses from such co-exposure. We have studied the reaction between the two commonly associated toxic metals of chromate, Cr(VI), and arsenite, As(III), with regards to the ability of As(III) to reductively activate Cr(VI) to generate oxidative stress and DNA damage. Using a DCF-based fluorescent dye assay we have demonstrated that the redox reaction between As(III) and Cr(VI) yields high valent intermediates of chromium, Cr(V), that are highly oxidizing. This induction of oxidizing potential was dose dependent and did not occur with As(III) or Cr(VI) alone or, with the other major oxidation state of arsenic, arsenate, As(V). The mechanism of oxidation of DCFH to the fluorescent species, DCF, in this reaction was through a direct, metal-based oxidation since addition of radical scavengers did not significantly decrease oxidation of the dye in this system. The addition of a ligand that stabilizes the high valent Cr(V) oxidation state, 2-ethyl-2-hydroxybutyric acid (EHBA), to the chromate and arsenite mixture resulted in an enhancement of DCF fluorescence. The DCF fluorescence observed with the Cr(VI) and As(III) mixture was also found to correlate with oxidative DNA damage as measured by a plasmid nicking assay. These data show how metal-metal interactions in environmental mixtures could result in the synergistic induction of oxidative stress and DNA damage. Further, these data demonstrate the utility of the DCF fluorescence assay as a sensitive method for screening synergistic redox interactions in metal mixtures.


Assuntos
Arsenitos/toxicidade , Carcinógenos Ambientais/toxicidade , Cromatos/toxicidade , Cromo/toxicidade , Dano ao DNA , Modelos Teóricos , Arsenitos/química , Carcinógenos Ambientais/química , Cromatos/química , Cromo/química , Interações Medicamentosas , Fluoresceínas/química , Fluorescência , Oxirredução , Estresse Oxidativo
9.
Semin Immunopathol ; 34(2): 237-59, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22080185

RESUMO

Staphylococcus aureus has been an important human pathogen throughout history and is currently a leading cause of bacterial infections worldwide. S. aureus has the unique ability to cause a continuum of diseases, ranging from minor skin infections to fatal necrotizing pneumonia. Moreover, the emergence of highly virulent, drug-resistant strains such as methicillin-resistant S. aureus in both healthcare and community settings is a major therapeutic concern. Neutrophils are the most prominent cellular component of the innate immune system and provide an essential primary defense against bacterial pathogens such as S. aureus. Neutrophils are rapidly recruited to sites of infection where they bind and ingest invading S. aureus, and this process triggers potent oxidative and non-oxidative antimicrobial killing mechanisms that serve to limit pathogen survival and dissemination. S. aureus has evolved numerous mechanisms to evade host defense strategies employed by neutrophils, including the ability to modulate normal neutrophil turnover, a process critical to the resolution of acute inflammation. Here we provide an overview of the role of neutrophils in host defense against bacterial pathogens and discuss strategies employed by S. aureus to circumvent neutrophil function.


Assuntos
Imunidade Inata/imunologia , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Neutrófilos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Virulência
10.
J Biol Chem ; 283(22): 15015-22, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18390903

RESUMO

Sco1 is implicated in the copper metallation of the Cu(A) site in Cox2 of cytochrome oxidase. The structure of Sco1 in the metallated and apo-conformers revealed structural dynamics primarily in an exposed region designated loop 8. The structural dynamics of loop 8 in Sco1 suggests it may be an interface for interactions with Cox17, the Cu(I) donor and/or Cox2. A series of conserved residues in the sequence motif (217)KKYRVYF(223) on the leading edge of this loop are shown presently to be important for yeast Sco1 function. Cells harboring Y219D, R220D, V221D, and Y222D mutant Sco1 proteins failed to restore respiratory growth or cytochrome oxidase activity in sco1Delta cells. The mutant proteins are stably expressed and are competent to bind Cu(I) and Cu(II) normally. Specific Cu(I) transfer from Cox17 to the mutant apo-Sco1 proteins proceeds normally. In contrast, using two in vivo assays that permit monitoring of the transient Sco1-Cox2 interaction, the mutant Sco1 molecules appear compromised in a function with Cox2. The mutants failed to suppress the respiratory defect of cox17-1 cells unlike wild-type SCO1. In addition, the mutants failed to suppress the hydrogen peroxide sensitivity of sco1Delta cells. These studies implicate different surfaces on Sco1 for interaction or function with Cox17 and Cox2.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos/fisiologia , Substituição de Aminoácidos , Transporte Biológico Ativo/fisiologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cobre , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais , Chaperonas Moleculares , Consumo de Oxigênio/fisiologia , Mapeamento de Peptídeos/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
J Biol Chem ; 282(14): 10233-42, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17237235

RESUMO

Cox19 is an important accessory protein in the assembly of cytochrome c oxidase in yeast. The protein is functional when tethered to the mitochondrial inner membrane, suggesting its functional role within the intermembrane space. Cox19 resembles Cox17 in having a twin CX(9)C sequence motif that adopts a helical hairpin in Cox17. The function of Cox17 appears to be a Cu(I) donor protein in the assembly of the copper centers in cytochrome c oxidase. Cox19 also resembles Cox17 in its ability to coordinate Cu(I). Recombinant Cox19 binds 1 mol eq of Cu(I) per monomer and exists as a dimeric protein. Cox19 isolated from the mitochondrial intermembrane space contains variable quantities of copper, suggesting that Cu(I) binding may be a transient property. Cysteinyl residues important for Cu(I) binding are also shown to be important for the in vivo function of Cox19. Thus, a correlation exists in the ability to bind Cu(I) and in vivo function.


Assuntos
Cobre/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cobre/química , Proteínas de Transporte de Cobre , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/isolamento & purificação , Chaperonas Moleculares , Ligação Proteica/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
12.
J Biol Chem ; 279(14): 14447-55, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-14729672

RESUMO

The yeast mitochondrion is shown to contain a pool of copper that is distinct from that associated with the two known mitochondrial cuproenzymes, superoxide dismutase (Sod1) and cytochrome c oxidase (CcO) and the copper-binding CcO assembly proteins Cox11, Cox17, and Sco1. Only a small fraction of mitochondrial copper is associated with these cuproproteins. The bulk of the remainder is localized within the matrix as a soluble, anionic, low molecular weight complex. The identity of the matrix copper ligand is unknown, but the bulk of the matrix copper fraction is not protein-bound. The mitochondrial copper pool is dynamic, responding to changes in the cytosolic copper level. The addition of copper salts to the growth medium leads to an increase in mitochondrial copper, yet the expansion of this matrix pool does not induce any respiration defects. The matrix copper pool is accessible to a heterologous cuproenzyme. Co-localization of human Sod1 and the metallochaperone CCS within the mitochondrial matrix results in suppression of growth defects of sod2Delta cells. However, in the absence of CCS within the matrix, the activation of human Sod1 can be achieved by the addition of copper salts to the growth medium.


Assuntos
Cobre/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cobre , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Chaperonas Moleculares , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa