RESUMO
Substantial heterogeneity within mutant TP53 acute myeloid leukemia (AML) and myelodysplastic syndrome with excess of blast (MDS-EB) precludes the exact assessment of prognostic impact for individual patients. We performed in-depth clinical and molecular analysis of mutant TP53 AML and MDS-EB to dissect the molecular characteristics in detail and determine its impact on survival. We performed next-generation sequencing on 2200 AML/MDS-EB specimens and assessed the TP53 mutant allelic status (mono- or bi-allelic), the number of TP53 mutations, mutant TP53 clone size, concurrent mutations, cytogenetics, and mutant TP53 molecular minimal residual disease and studied the associations of these characteristics with overall survival. TP53 mutations were detected in 230 (10.5%) patients with AML/MDS-EB with a median variant allele frequency of 47%. Bi-allelic mutant TP53 status was observed in 174 (76%) patients. Multiple TP53 mutations were found in 49 (21%) patients. Concurrent mutations were detected in 113 (49%) patients. No significant difference in any of the aforementioned molecular characteristics of mutant TP53 was detected between AML and MDS-EB. Patients with mutant TP53 have a poor outcome (2-year overall survival, 12.8%); however, no survival difference between AML and MDS-EB was observed. Importantly, none of the molecular characteristics were significantly associated with survival in mutant TP53 AML/MDS-EB. In most patients, TP53 mutations remained detectable in complete remission by deep sequencing (73%). Detection of residual mutant TP53 was not associated with survival. Mutant TP53 AML and MDS-EB do not differ with respect to molecular characteristics and survival. Therefore, mutant TP53 AML/MDS-EB should be considered a distinct molecular disease entity.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Citogenética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Mutação , Síndromes Mielodisplásicas/diagnóstico , Proteína Supressora de Tumor p53/genéticaRESUMO
The tendency of 5-methylcytosine (5mC) to undergo spontaneous deamination has had a major role in shaping the human genome, and this methylation damage remains the primary source of somatic mutations that accumulate with age. How 5mC deamination contributes to cancer risk in different tissues remains unclear. Genomic profiling of 3 early-onset acute myeloid leukemias (AMLs) identified germ line loss of MBD4 as an initiator of 5mC-dependent hypermutation. MBD4-deficient AMLs display a 33-fold higher mutation burden than AML generally, with >95% being C>T in the context of a CG dinucleotide. This distinctive signature was also observed in sporadic cancers that acquired biallelic mutations in MBD4 and in Mbd4 knockout mice. Sequential sampling of germ line cases demonstrated repeated expansion of blood cell progenitors with pathogenic mutations in DNMT3A, a key driver gene for both clonal hematopoiesis and AML. Our findings reveal genetic and epigenetic factors that shape the mutagenic influence of 5mC. Within blood cells, this links methylation damage to the driver landscape of clonal hematopoiesis and reveals a conserved path to leukemia. Germ line MBD4 deficiency enhances cancer susceptibility and predisposes to AML.
Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Endodesoxirribonucleases/genética , Regulação Leucêmica da Expressão Gênica , Hematopoese , Leucemia Mieloide Aguda/genética , Adulto , DNA Metiltransferase 3A , Feminino , Deleção de Genes , Células Germinativas/metabolismo , Células Germinativas/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Mutação , Acúmulo de MutaçõesRESUMO
PURPOSE: AML is a genetically heterogeneous disease, particularly in older patients. In patients older than 60 years, survival rates are variable after the most important curative approach, intensive chemotherapy followed by allogeneic hematopoietic cell transplantation (allo-HCT). Thus, there is an urgent need in clinical practice for a prognostic model to identify older patients with AML who benefit from curative treatment. METHODS: We studied 1,910 intensively treated patients older than 60 years with AML and high-risk myelodysplastic syndrome (HR-MDS) from two cohorts (NCRI-AML18 and HOVON-SAKK). The median patient age was 67 years. Using a random survival forest, clinical, molecular, and cytogenetic variables were evaluated in an AML development cohort (n = 1,204) for association with overall survival (OS). Relative weights of selected variables determined the prognostic model, which was validated in AML (n = 491) and HR-MDS cohorts (n = 215). RESULTS: The complete cohort had a high frequency of poor-risk features, including 2022 European LeukemiaNet adverse-risk (57.3%), mutated TP53 (14.4%), and myelodysplasia-related genetic features (65.1%). Nine variables were used to construct four groups with highly distinct 4-year OS in the (1) AML development, (2) AML validation, and (3) HR-MDS test cohorts ([1] favorable: 54% ± 4%, intermediate: 38% ± 2%, poor: 21% ± 2%, very poor: 4% ± 1%; [2] 54% ± 9%, 43% ± 4%, 27% ± 4%, 4% ± 3%; and [3] 54% ± 10%, 33% ± 6%, 14% ± 5%, 0% ± 3%, respectively). This new AML60+ classification improves current prognostic classifications. Importantly, patients within the AML60+ intermediate- and very poor-risk group significantly benefited from allo-HCT, whereas the poor-risk patients showed an indication, albeit nonsignificant, for improved outcome after allo-HCT. CONCLUSION: The new AML60+ classification provides prognostic information for intensively treated patients 60 years and older with AML and HR-MDS and identifies patients who benefit from intensive chemotherapy and allo-HCT.
RESUMO
PURPOSE: The applicability of FLT3-internal tandem duplications (FLT3-ITD) for assessing measurable residual disease (MRD) in acute myeloid leukemia (AML) in complete remission (CR) has been hampered by patient-specific duplications and potential instability of FLT3-ITD during relapse. Here, we comprehensively investigated the impact of next-generation sequencing (NGS)-based FLT3-ITD MRD detection on treatment outcome in a cohort of patients with newly diagnosed AML in relation to established prognostic factors at diagnosis and other MRD measurements, ie, mutant NPM1 and multiparameter flow cytometry. METHODS: In 161 patients with de novo FLT3-ITD AML, NGS was performed at diagnosis and in CR after intensive remission induction treatment. FLT3-ITD MRD status was correlated with the cumulative incidence of relapse and overall survival (OS). RESULTS: NGS-based FLT3-ITD MRD was present in 47 of 161 (29%) patients with AML. Presence of FLT3-ITD MRD was associated with increased risk of relapse (4-year cumulative incidence of relapse, 75% FLT3-ITD MRD v 33% no FLT3-ITD MRD; P < .001) and inferior OS (4-year OS, 31% FLT3-ITD MRD v 57% no FLT3-ITD MRD; P < .001). In multivariate analysis, detection of FLT3-ITD MRD in CR confers independent prognostic significance for relapse (hazard ratio, 3.55; P < .001) and OS (hazard ratio 2.51; P = .002). Strikingly, FLT3-ITD MRD exceeds the prognostic value of most generally accepted clinical and molecular prognostic factors, including the FLT3-ITD allelic ratio at diagnosis and MRD assessment by NGS-based mutant NPM1 detection or multiparameter flow cytometry. CONCLUSION: NGS-based detection of FLT3-ITD MRD in CR identifies patients with AML with profound risk of relapse and death that outcompetes the significance of most established prognostic factors at diagnosis and during therapy, and furnishes support for FLT3-ITD as a clinically relevant biomarker for dynamic disease risk assessment in AML.
Assuntos
Leucemia Mieloide Aguda , Humanos , Prognóstico , Mutação , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva , Neoplasia Residual/genética , Proteínas Nucleares/genética , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
It remains challenging in chronic lymphocytic leukemia (CLL) to distinguish between patients with favorable and unfavorable time-to-first treatment (TTFT). Additionally, the downstream protein correlates of well-known molecular features of CLL are not always clear. To address this, we selected 40 CLL patients with TTFT ≤24 months and compared their B cell intracellular protein expression with 40 age- and sex-matched CLL patients with TTFT >24 months using mass spectrometry. In total, 3268 proteins were quantified in the cohort. Immunoglobulin heavy-chain variable (IGHV) mutational status and trisomy 12 were most impactful on the CLL proteome. Comparing cases to controls, 5 proteins were significantly upregulated, whereas 3 proteins were significantly downregulated. Of these, only THEMIS2, a signaling protein acting downstream of the B cell receptor, was significantly associated with TTFT, independently of IGHV and TP53 mutational status (hazard ratio, 2.49 [95% confidence interval, 1.62-3.84]; P < 0.001). This association was validated on the mRNA and protein level by quantitative polymerase chain reaction and ELISA, respectively. Analysis of 2 independently generated RNA sequencing and mass spectrometry datasets confirmed the association between THEMIS2 expression and clinical outcome. In conclusion, we present a comprehensive characterization of the proteome of untreated CLL and identify THEMIS2 expression as a putative biomarker of TTFT.