Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell Tissue Bank ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750214

RESUMO

Fatigue crack propagation resistance and high-cycle S-N fatigue life of cortical bone allograft tissue are both negatively impacted in a radiation dose-dependent manner from 0 to 25 kGy. The standard radiation sterilization dose of 25-35 kGy has been shown to induce cleavage of collagen molecules into smaller peptides and accumulation of stable crosslinks within the collagen matrix, suggesting that these mechanisms may influence radiation-induced losses in cyclic fracture resistance. The objective of this study was to determine the radiation dose-dependency of collagen chain fragmentation and crosslink accumulation within the dose range of 0-25 kGy. Previously, cortical bone compact tension specimens from two donor femoral pairs were divided into four treatment groups (0 kGy, 10 kGy, 17.5 kGy, and 25 kGy) and underwent cyclic loading fatigue crack propagation testing. Following fatigue testing, collagen was isolated from one compact tension specimen in each treatment group from both donors. Radiation-induced collagen chain fragmentation was assessed using SDS-PAGE (n = 5), and accumulation of pentosidine, pyridinoline, and non-specific advanced glycation end products were assessed using a fluorometric assay (n = 4). Collagen chain fragmentation increased progressively in a dose-dependent manner (p < 0.001). Crosslink accumulation at all radiation dose levels increased relative to the 0 kGy control but did not demonstrate dose-dependency (p < 0.001). Taken together with our previous findings on fatigue crack propagation behavior, these data suggest that while collagen crosslink accumulation may contribute to reduced notched fatigue behavior with irradiation, dose-dependent losses in fatigue crack propagation resistance are mainly influenced by radiation-induced chain fragmentation.

2.
Knee Surg Sports Traumatol Arthrosc ; 31(8): 3434-3440, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37115230

RESUMO

PURPOSE: The purpose of this study was to evaluate the effect of bioabsorbable interference screw diameter on the pullout strength and failure mode for femoral tunnel fixation in primary anterior cruciate ligament reconstruction (ACLR) at time zero fixation using bone-patellar tendon-bone (BTB) autograft in a cadaveric model. METHODS: Twenty-four fresh-frozen cadaveric knees were obtained from 17 different donors. Specimens were allocated to three different treatment groups (n = 8 per group) based on interference screw diameter: 6 mm, 7 mm, or 8 mm biocomposite interference screw. All specimens underwent dual energy X-ray absorptiometry (DEXA) scanning prior to allocation to ensure no difference in bone mineral density among groups (n.s.). All specimens underwent femoral-sided ACLR with BTB autograft. Specimens subsequently underwent mechanical testing under monotonic loading conditions to failure. The load to failure and failure mechanism were recorded. RESULTS: The mean pullout force (N) at time zero for each group was 309 ± 213 N, 518 ± 313 N, and 541 ± 267 N for 6 mm, 7 mm, and 8 mm biocomposite interference screw diameter, respectively (n.s.). One specimen in the 6 mm group, two specimens in the 7 mm group, and one specimen in the 8 mm group failed by screw pullout. The remainder in each group failed by graft failure (n.s.). CONCLUSION: Biocomposite interference screw diameter did not have a significant influence on fixation pullout strength or failure mode following femoral tunnel fixation using BTB autograft at time zero. A 6 mm interference screw can improve preservation of native bone stock, increase potential for biologic healing, and decrease the risk of damage to the graft during insertion without significantly compromising fixation strength. This study supports the use of smaller 6 mm interference screw diameter options for femoral tunnel fixation in ACLR.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Ligamento Patelar , Humanos , Ligamento Cruzado Anterior/cirurgia , Ligamento Patelar/cirurgia , Parafusos Ósseos , Cadáver , Fenômenos Biomecânicos
3.
Clin Orthop Relat Res ; 480(6): 1208-1219, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35175232

RESUMO

BACKGROUND: Structural cortical bone allografts are a reasonable treatment option for patients with large cortical bone defects caused by trauma, tumors, or complications of arthroplasty. Although structural cortical bone allografts provide the benefit of an osteoconductive material, they are susceptible to fatigue failure (fracture) and carry a risk of disease transmission. Radiation-sterilization at the recommended dose of 25 kGy decreases the risk of disease transmission. However, previous studies demonstrated that radiation sterilization at this dose can negatively impact the high cycle-fatigue life of cortical bone. Although the effects of higher doses of radiation on cortical bone allografts are well described, the effects of lower doses of radiation on a high-cycle fatigue life of cortical bone are poorly understood. QUESTIONS/PURPOSES: (1) Does the cycle-fatigue life of human cortical allograft bone vary with gamma radiation dose levels of 0 (control), 10 kGy, 17.5 kGy, and 25 kGy? (2) What differences in Raman spectral biomarkers are observed following varying doses of gamma radiation exposure? METHODS: The high-cycle fatigue behavior of human cortical bone specimens was examined at different radiation sterilization doses under physiologic stress levels (35 MPa) and in a 37° C phosphate-buffered saline bath using a custom-designed rotating-bending fatigue device. Six human femora from three donors were obtained for this study (two male, 63 and 61 years old, respectively, and one female, 48 years old). Test specimens were allocated among four treatment groups (0 kGy [control], 10 kGy, 17.5 kGy, and 25 kGy) based on donor and anatomic location of harvest site (both length and cross-sectional quadrant of femoral diaphysis) to ensure equal variation (n = 13 per group). Specimens underwent high-cycle fatigue testing to failure. The number of cycles to failure was recorded. Raman spectroscopy (a noninvasive vibrational spectroscopy used to qualitatively assess bone quality) was used to detect whether any changes in Raman spectral biomarkers occurred after varying doses of gamma radiation exposure. RESULTS: There was a decrease in the log-transformed mean high-cycle fatigue life in specimens irradiated at 25 kGy (5.39 ± 0.32) compared with all other groups (0 kGy: 6.20 ± 0.50; 10k Gy: 6.35 ± 0.79; 17.5 kGy: 6.01 ± 0.53; p = 0.001). Specimens irradiated at 25 kGy were also more likely to exhibit a more brittle fracture surface pattern than specimens with more ductile fracture surface patterns irradiated at 0 kGy, 10 kGy, and 17.5 kGy (p = 0.04). The Raman biomarker for the ratio of the relative amount of disordered collagen to ordered collagen showed a decrease at the 10 kGy radiation level from 1.522 ± 0.025 preirradiation to 1.489 ± 0.024 postirradiation (p = 0.01); no other detectable changes in Raman biomarkers were observed. CONCLUSION: The high-cycle fatigue life of cortical bone undergoes a nonlinear, dose-dependent decrease with an increase in gamma radiation sterilization in a clinically relevant dose range (0-25 kGy). Importantly, a notable drop-off in the high-cycle fatigue life of cortical bone appeared to occur between 17.5 kGy and 25 kGy, correlating to a sixfold decrease in mean cycles to failure. We speculate that the decrease in the Raman biomarker for disordered collagen at 10 kGy with no loss in high-cycle fatigue life may be caused by an increased amount of nonenzymatic crosslinking of the collagen backbone relative to collagen chain-scission (whereas the benefits of crosslinking may be outweighed by excess scission of the collagen backbone at higher radiation doses), but future studies will need to ascertain whether this in fact is the case. CLINICAL RELEVANCE: Radiation sterilization at the industry standard of 25 kGy has a substantial negative impact on the high-cycle fatigue life of cortical bone. Given these findings, it is possible to provide a meaningful increase in the high-cycle fatigue life and improve the overall functional lifetime of cortical bone allografts by lowering the radiation-sterilization dose below 25 kGy. Future work on radiation-sterilization methods at these clinically relevant doses is warranted to aid in preserving the high cycle fatigue life of cortical bone allografts while maintaining sterility.


Assuntos
Osso Cortical , Fraturas Ósseas , Aloenxertos , Biomarcadores , Transplante Ósseo/efeitos adversos , Colágeno , Estudos Transversais , Feminino , Raios gama/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Esterilização/métodos
4.
Proc Natl Acad Sci U S A ; 116(49): 24457-24462, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740616

RESUMO

Microarchitectured materials achieve superior mechanical properties through geometry rather than composition. Although ultralightweight microarchitectured materials can have high stiffness and strength, application to durable devices will require sufficient service life under cyclic loading. Naturally occurring materials provide useful models for high-performance materials. Here, we show that in cancellous bone, a naturally occurring lightweight microarchitectured material, resistance to fatigue failure is sensitive to a microarchitectural trait that has negligible effects on stiffness and strength-the proportion of material oriented transverse to applied loads. Using models generated with additive manufacturing, we show that small increases in the thickness of elements oriented transverse to loading can increase fatigue life by 10 to 100 times, far exceeding what is expected from the associated change in density. Transversely oriented struts enhance resistance to fatigue by acting as sacrificial elements. We show that this mechanism is also present in synthetic microlattice structures, where fatigue life can be altered by 5 to 9 times with only negligible changes in density and stiffness. The effects of microstructure on fatigue life in cancellous bone and lattice structures are described empirically by normalizing stress in traditional stress vs. life (S-N) curves by √ψ, where ψ is the proportion of material oriented transverse to load. The mechanical performance of cancellous bone and microarchitectured materials is enhanced by aligning structural elements with expected loading; our findings demonstrate that this strategy comes at the cost of reduced fatigue life, with consequences to the use of microarchitectured materials in durable devices and to human health in the context of osteoporosis.


Assuntos
Materiais Biomiméticos/química , Fadiga , Vértebras Torácicas/química , Vértebras Torácicas/fisiologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Força Compressiva , Módulo de Elasticidade , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Metacrilatos , Pessoa de Meia-Idade , Modelos Teóricos , Poliuretanos , Porosidade , Resistência à Tração , Vértebras Torácicas/diagnóstico por imagem , Suporte de Carga , Microtomografia por Raio-X
5.
J Arthroplasty ; 37(6): 1130-1135, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35131388

RESUMO

BACKGROUND: A uniquely designed, non-heat-treated moderately cross-linked acetabular polyethylene liner used in total hip arthroplasty (THA) demonstrated excessive wear during routine follow-up, prompting an evaluation of the linear wear rate. METHODS: All THAs were performed by the senior author. The study group included 38 THAs using the uniquely designed polyethylene in question, compared to a control group of 21 THAs using another moderately cross-linked polyethylene with good 10-year outcomes. Two-dimensional linear head penetration wear measurements were obtained using the Martell Hip Analysis Suite, and retrieval analysis was performed on two liners. RESULTS: The study group had a significantly higher average penetration rate of 0.089 mm/y than the control group average rate of 0.047 mm/y (P = .04). Forty-five percent of the study group had a wear rate above the osteolysis threshold (0.1 mm/y), compared to 24% in the control group. Macroscopic analysis of two retrieved liners validated the radiographic findings. CONCLUSION: The data suggest unexpectedly higher wear rates for a moderately cross-linked polyethylene design, with nearly half of the study group at risk for osteolysis. Further registry or database analyses of this particular moderately cross-linked polyethylene are warranted.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Osteólise , Seguimentos , Humanos , Polietileno , Desenho de Prótese , Falha de Prótese
7.
Proc Natl Acad Sci U S A ; 113(11): 2892-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929343

RESUMO

Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.


Assuntos
Osso e Ossos/química , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Anisotropia , Materiais Biomiméticos , Remodelação Óssea , Osso e Ossos/ultraestrutura , Força Compressiva , Transtornos Traumáticos Cumulativos/metabolismo , Transtornos Traumáticos Cumulativos/fisiopatologia , Elasticidade , Feminino , Fraturas Espontâneas/metabolismo , Fraturas Espontâneas/fisiopatologia , Fraturas de Estresse/metabolismo , Fraturas de Estresse/fisiopatologia , Produtos Finais de Glicação Avançada/análise , Humanos , Vértebras Lombares/química , Vértebras Lombares/ultraestrutura , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fraturas por Osteoporose/metabolismo , Fraturas por Osteoporose/fisiopatologia , Estresse Mecânico , Torção Mecânica , Suporte de Carga
10.
J Arthroplasty ; 33(10): 3313-3319, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29871834

RESUMO

BACKGROUND: The purpose of this study was to determine the incidence of metal release in contemporary total knee arthroplasty and the patient-related factors associated with this release. METHODS: In total, 256 retrieved cobalt-chromium femoral components were collected through a multi-institutional orthopedic implant retrieval program (implanted: 1-15 years). Implants were mainly revised for loosening (84/256), instability (62/256), and infection (46/256). Third-body damage was assessed using a semiquantitative scoring method. Microscale electro-corrosion damage (MECD) was evaluated using digital optical microscopy. Radii of curvature were measured from representative components to calculate anterior-posterior and medial-lateral ratios. Femoral component surface roughness was measured using a white light interferometer. Using a multivariable linear model, associations between damage score, implant, and patient factors were tested. Spearman's ρ correlation tests were performed to determine the association between roughness measurements and damage score. RESULTS: Mild to severe damage was observed in 52% (134/256) of the components. In the multivariable linear model, anterior-posterior ratio (ß = -8.07; P < .001), loosening (ß = -0.52; P = .006), and patient weight (ß = 0.01; P = .007) were associated with damage score. Suspected MECD damage was observed in 82% (209/256) of components. The Ra value (ρ = 0.196; P = .002) and Rq value (ρ = 0.157; P = .012) increased as the damage score increased. CONCLUSION: The findings of this retrieval study support that similar damage mechanisms exist in contemporary and long-term total knee arthroplasty devices. Additionally, we observed associations between loosening, anterior-posterior conformity, and patient weight with increased surface damage.


Assuntos
Artroplastia do Joelho/instrumentação , Ligas de Cromo , Prótese do Joelho/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Joelho/efeitos adversos , Cromo , Cobalto , Corrosão , Feminino , Fêmur/cirurgia , Humanos , Prótese do Joelho/efeitos adversos , Masculino , Pessoa de Meia-Idade , Desenho de Prótese , Falha de Prótese
11.
J Arthroplasty ; 33(8): 2677-2683, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29681493

RESUMO

BACKGROUND: All polyethylene acetabular liners wear over time, and numerous methods for calculating linear wear rates exist. The objective of this study was to compare 2-dimensional wear rates between direct, micrometer measurements and the computerized, edge-detection method using Hip Analysis Suite (HAS) 8.0.4.3. METHODS: Two groups of retrieved acetabular liners from Harris-Galante Prosthesis I and Harris-Galante Prosthesis II implants in situ for more than 10 years were evaluated. Group 1 (n = 18) contained liners with both early postoperative (<6 months) and prerevision radiographs taken within 1 month of explantation. Group 2 (n = 55) included liners with only prerevision X-rays (ie, 1 radiograph for wear assessment). Average and maximum direct linear wear was calculated from thicknesses measured at 6 consistent, well-separated locations (3 in the worn and 3 in the unworn regions) using a calibrated, digital micrometer. HAS 8.0.4.3 was used to calculate 2-dimensional wear from anteroposterior pelvic radiographs. RESULTS: Aggregate wear rates calculated by HAS were higher than those calculated by the average of direct measurements for group 1 (P = .020) and group 2 (P < .001). However, comparing the maximum direct micrometer measurements to HAS showed no difference for either group 1 (P = .351) or group 2 (P = .451). Linear regression analysis showed a strong correlation between HAS and both average and maximum direct wear measures for both groups, though the coefficient for the direct maximum measurement comparisons were closer to one, indicating a better one-to-one correspondence between HAS and direct maximum wear. CONCLUSION: To our knowledge, this is the first study to compare and validate 2-dimensional wear rates in polyethylene acetabular liners between direct measurements from retrieved components and a radiographic computer-assisted technique (as opposed to comparison against a phantom component). Wear rates determined by direct measurements from retrievals were consistent with computer-assisted 2-dimensional methods when comparing maximum wear measurements. In addition, a single prerevision radiograph appears to be sufficient to assess 2-dimensional in vivo wear.


Assuntos
Acetábulo/cirurgia , Artroplastia de Quadril/efeitos adversos , Prótese de Quadril , Polietileno/efeitos adversos , Falha de Prótese , Adulto , Idoso , Remoção de Dispositivo , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Desenho de Prótese , Radiografia , Análise de Regressão
12.
Clin Orthop Relat Res ; 475(12): 3118, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28924733

RESUMO

In the November Editorial, "Editorial: Do Orthopaedic Surgeons Belong on the Sidelines at American Football Games?" a statistic was attributed to a JAMA study (Ref. 10) that should have been attributed to an article from the New York Times (Ref. 16). The sentence in question should read: "We accept that critique, provided that the skeptics acknowledge that the best-case estimate in support of the safety of football would result in a CTE prevalence estimate of 9%, since only another 1200 ex-NFL players have died [16] since this research group [10] began studying football players' brains."

14.
J Arthroplasty ; 32(9): 2887-2891, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28668212

RESUMO

BACKGROUND: During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. In vitro testing suggests that corrosion is not a concern in sleeved ceramic heads; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads in retrieved total hip arthroplasties. METHODS: Thirty-seven sleeved ceramic heads were collected during revision. The femoral heads and sleeves were implanted 0.0-3.3 years. The implants were revised predominantly for instability, infection, and loosening. Fifty percent of the retrievals were implanted during a primary surgery. Fretting corrosion was assessed using the Goldberg-Higgs semiquantitative scoring system. RESULTS: Mild-to-moderate fretting corrosion scores (score = 2-3) were observed in 92% of internal tapers, 19% of external tapers, and 78% of the stems. Severe fretting corrosion was observed in 1 stem trunnion that was previously retained during revision surgery and none of the retrieved sleeves. There was no difference in corrosion damage of sleeves used in primary or revision surgery. CONCLUSION: The fretting corrosion scores in this study were predominantly mild and lower than reported fretting scores of cobalt-chrome heads in metal-on-polyethylene bearings. Although intended for use in revisions, we found that the short-term in vivo corrosion behavior of the sleeves was similar in both primary and revision surgery applications. From an in vivo corrosion perspective, sleeves are a reasonable solution for restoring the stem taper during revision surgery.


Assuntos
Artroplastia de Quadril , Cerâmica , Ligas de Cromo/química , Falha de Prótese , Idoso , Corrosão , Fêmur/cirurgia , Cabeça do Fêmur/cirurgia , Prótese de Quadril , Humanos , Pessoa de Meia-Idade , Ortopedia , Polietileno , Desenho de Prótese , Reoperação , Software , Titânio/química
15.
J Arthroplasty ; 32(4): 1363-1373, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28111124

RESUMO

BACKGROUND: Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion. The purpose of this study was to analyze whether microgrooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. METHODS: A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were 2 groups of 60 heads each, mated with either smooth or microgrooved stem tapers. A high-precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head-neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads were analyzed for the maximum depth of material loss and focused ion beam cross-sectioned to view oxide and base metal. RESULTS: Fretting corrosion damage was not different between the 2 cohorts at the femoral head (P = .14, Mann-Whitney) or stem tapers (P = .35). There was no difference in the maximum depths of material loss between the cohorts (P = .71). Cross-sectioning revealed contact damage, signs of micro-motion, and chromium-rich oxide layers in both cohorts. Microgroove imprinting did not appear to have a different effect on the fretting corrosion behavior. CONCLUSION: The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with microgrooved stems exhibit increased in vivo fretting corrosion damage or material release.


Assuntos
Prótese de Quadril/efeitos adversos , Desenho de Prótese , Falha de Prótese , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril/instrumentação , Ligas de Cromo , Estudos de Coortes , Corrosão , Feminino , Cabeça do Fêmur/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Polietileno
16.
J Arthroplasty ; 31(9 Suppl): 277-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27460298

RESUMO

BACKGROUND: Taper design has been identified as a possible contributor to fretting corrosion damage at modular connections in total hip arthroplasty systems, but variations in as-manufactured taper interfaces may confound this analysis. This study characterized taper damage in retrievals with 2 different taper sizes but comparable taper surface finishes and investigated if fretting and corrosion damage is related to taper size in the context of a multivariable analysis for metal-on-polyethylene bearings. METHODS: A total of 252 cobalt chromium femoral heads were identified in a collection of retrievals: 77 with taper A and 175 with taper B. Implantation time averaged 5.4 ± 6.0 years (range, 0-26 years). Explants were cleaned and analyzed using a 4-point semiquantitative method. Clinical and device factors related to head taper fretting corrosion damage were assessed using ordinal logistic regression with forward stepwise control. Components were then selected to create 2 balanced cohorts, matched on significant variables from the multivariable analysis. RESULTS: Increased head offset (P < .001), longer implantation time (P = .002), heavier patients (P < .001), and more flexible tapers (P < .001) were associated with increased taper fretting and corrosion damage. When damage scores were compared between the balanced groups, no significant differences were found. CONCLUSION: These results suggest that fretting and corrosion damage is insensitive to differences in taper size. The final model derived explains almost half of the fretting corrosion damage observed and identifies contributing factors that are consistent with other in vitro and retrieval studies.


Assuntos
Artroplastia de Quadril/métodos , Metais/química , Polietileno/química , Desenho de Prótese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril/instrumentação , Cromo , Cobalto , Estudos de Coortes , Corrosão , Feminino , Cabeça do Fêmur/cirurgia , Prótese de Quadril , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Falha de Prótese , Adulto Jovem
17.
J Arthroplasty ; 31(12): 2900-2906, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27426028

RESUMO

BACKGROUND: Metal debris and ion release has raised concerns in joint arthroplasty. The purpose of this study was to characterize the sources of metallic ions and particulate debris released from long-term (in vivo >15 years) total knee arthroplasty femoral components. METHODS: A total of 52 CoCr femoral condyles were identified as having been implanted for more than 15 years. The femoral components were examined for incidence of 5 types of damage (metal-on-metal wear due to historical polyethylene insert failure, mechanically assisted crevice corrosion at taper interfaces, cement interface corrosion, third-body abrasive wear, and inflammatory cell-induced corrosion [ICIC]). Third-body abrasive wear was evaluated using the Hood method for polyethylene components and a similar method quantifying surface damage of the femoral condyle was used. The total area damaged by ICIC was quantified using digital photogrammetry. RESULTS: Surface damage associated with corrosion and/or CoCr debris release was identified in 51 (98%) CoCr femoral components. Five types of damage were identified: 98% of femoral components exhibited third-body abrasive wear (mostly observed as scratching, n = 51/52), 29% of femoral components exhibited ICIC damage (n = 15/52), 41% exhibited cement interface damage (n = 11/27), 17% exhibited metal-on-metal wear after wear-through of the polyethylene insert (n = 9/52), and 50% of the modular femoral components exhibited mechanically assisted crevice corrosion taper damage (n = 2/4). The total ICIC-damaged area was an average of 0.11 ± 0.12 mm2 (range: 0.01-0.46 mm2). CONCLUSION: Although implant damage in total knee arthroplasty is typically reported with regard to the polyethylene insert, the results of this study demonstrate that abrasive and corrosive damage occurs on the CoCr femoral condyle in vivo.


Assuntos
Artroplastia do Joelho/instrumentação , Cromo , Cobalto , Prótese do Joelho/efeitos adversos , Falha de Prótese/etiologia , Adulto , Idoso , Corrosão , Feminino , Fêmur/cirurgia , Humanos , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Polietileno , Desenho de Prótese , Adulto Jovem
20.
J Arthroplasty ; 30(6): 1073-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25743106

RESUMO

Contemporary total knee designs incorporating highly porous metallic surfaces have demonstrated promising clinical outcomes. However, stiffness differences between modular and monoblock porous tantalum tibial trays may affect bone ingrowth. This study investigated effect of implant design, spatial location and clinical factors on bone ingrowth. Three modular and twenty-one monoblock retrieved porous tantalum tibial trays were evaluated for bone ingrowth. Nonparametric statistical tests were used to investigate differences in bone ingrowth by implant design, tray spatial location, substrate depth and clinical factors. Modular trays (5.3 ± 3.2%) exhibited higher bone ingrowth than monoblock trays (1.6 ± 1.9%, P = 0.032). Bone ingrowth in both designs was highest in the initial 500 µm from the surface. Implantation time was positively correlated with bone ingrowth for monoblock trays.


Assuntos
Artroplastia do Joelho/métodos , Articulação do Joelho/cirurgia , Prótese do Joelho , Desenho de Prótese/métodos , Tantálio/química , Tíbia/cirurgia , Adulto , Idoso , Desenvolvimento Ósseo , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Porosidade , Reoperação , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa