Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Dis Aquat Organ ; 158: 201-213, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934260

RESUMO

Fillet discoloration by red and melanized focal changes (RFCs and MFCs) is common in farmed Atlantic salmon Salmo salar. In farmed rainbow trout Oncorhynchus mykiss, similar changes have been noted, but their prevalence and histological characteristics have not been investigated. Thus, we conducted a study encompassing 1293 rainbow trout from 3 different farm sites in Norway, all examined at the time of slaughter. Both macroscopic and histological assessments of the changes were performed. Reverse transcription (RT)-qPCR analyses and in situ hybridization (ISH) were used to detect the presence and location, respectively, of potential viruses. Only 1 RFC was detected in a single fillet, while the prevalence of MFCs ranged from 1.46 to 6.47% between populations. The changes were predominantly localized in the cranioventral region of the fillet. Histological examinations unveiled necrotic myocytes, fibrosis, and regeneration of myocytes. Melano-macrophages were found in the affected areas and in myoseptal adipose tissue. Organized granulomas were observed in only 1 fish. Notably, the presence of inflammatory cells, including melano-macrophages, appeared lower compared to what has been previously documented in Atlantic salmon MFCs. Instead, fibrosis and regeneration dominated. RT-qPCR and ISH revealed the presence of piscine orthoreovirus 1 (PRV-1) and salmonid alphavirus (SAV) in skeletal muscle. However, these viruses were not consistently associated with lesioned areas, contrasting previous findings in Atlantic salmon. In conclusion, rainbow trout develop MFCs of a different character than farmed Atlantic salmon, and we speculate whether the observed pathological differences are contributing to their reduced occurrence in farmed rainbow trout.


Assuntos
Aquicultura , Doenças dos Peixes , Músculo Esquelético , Oncorhynchus mykiss , Animais , Doenças dos Peixes/virologia , Músculo Esquelético/virologia , Noruega
2.
J Fish Dis ; : e13978, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840479

RESUMO

Piscine orthoreovirus-1 (PRV-1) is a prevalent agent in Atlantic salmon (Salmo salar) and the causative agent of heart and skeletal muscle inflammation (HSMI), an important disease in farmed Atlantic salmon. Investigations into the introduction and dissemination routes of PRV-1 in a field setting have been limited. This study aimed to better understand PRV-1 infections and HSMI-associated mortality under field conditions. We tracked introduction and spread of PRV-1 over one production cycle in a geographically isolated region in Norwegian aquaculture. From five sites, a total of 32 virus isolates were sequenced and genogrouped. The results indicated multiple introductions of PRV-1 to the area, but also revealed a high level of genetic homogeneity among the virus variants. The variants differed from that of the previous production cycle at two out of three sites investigated, suggesting that synchronized fallowing can be a useful tool for preventing dissemination of PRV-1 between generations of fish. Exposure to PRV-1 at the freshwater stage was identified as a potential source of introduction. A low level of HSMI-associated mortality was observed at all sites, with the onset of mortality showing some variation across PRV-1 genogroups. However, the study highlighted the complexity of associating viral genogroups with mortality in a field setting. Overall, this study contributes valuable insights into PRV-1 dynamics in a real-world aquaculture setting, offering potential strategies for disease management and prevention.

3.
J Fish Dis ; : e13988, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943363

RESUMO

Melanized focal changes (MFCs) in the fillet of farmed Atlantic salmon is a major quality concern. The changes are thought to initially appear as acute red focal changes (RFCs) that progress into chronic MFCs. Recent findings have indicated that hypoxia may be important in their development, possibly leading to necrosis affecting not only myocytes but also adipocytes. Thus, the aim of this study was to investigate possible hypoxic conditions in RFCs and the subsequent inflammatory responses and lesions in the adipose tissue in RFCs and MFCs. A collection of RFCs, MFCs and control muscle samples from several groups of farmed salmon was studied. Using immunohistochemistry, we found induction of the hypoxia-inducible factor 1 pathway in RFCs. Histological investigations of RFCs and MFCs revealed different stages of fat necrosis, including necrotic adipocytes, a myospherulosis-like reaction and the formation of pseudocystic spaces. Accumulations of foamy macrophages were detected in MFCs, indicating degradation and phagocytosis of lipids. Using in situ hybridization, we showed the presence of tyrosinase- and tyrosinase-related protein-1-expressing amelanotic cells in RFCs, which in turn became melanized in MFCs. In conclusion, we propose a sequence of events leading to the formation of MFCs, highlighting the pivotal role of adiposity, hypoxia and fat necrosis.

4.
Vet Res ; 54(1): 3, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694262

RESUMO

Fish health personnel have limited tools in combatting viral diseases such as heart and skeletal muscle inflammation (HSMI) in open net-pen farmed Atlantic salmon. In this study, we aimed to predict HSMI by intensified health monitoring and apply clinical nutrition to mitigate the condition. We followed a commercial cohort (G1) of Atlantic salmon that was PRV-1 naïve when transferred to a sea cage at a location where HSMI outbreaks commonly occur. The fish in the other cages (G2-G6) at the location had a different origin than G1 and were PRV-1 positive prior to sea transfer. By continuous analysis of production data and sequentially (approximately every fourth week) performing autopsy, RT-qPCR (for PRV-1 and selected immune genes), blood and histological analysis of 10 fish from G1 and G2, we identified the time of PRV-1 infection in G1 and predicted the onset of HSMI prior to any clinical signs of disease. Identical sequences across partial genomes of PRV-1 isolates from G1 and G2 suggest the likely transfer from infected cages to G1. The isolates were grouped into a genogroup known to be of high virulence. A commercial health diet was applied during the HSMI outbreak, and the fish had low mortality and an unaffected appetite. In conclusion, we show that fish health and welfare can benefit from in-depth health monitoring. We also discuss the potential health value of clinical nutrition as a mean to mitigate HSMI.


Assuntos
Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Salmo salar , Animais , Infecções por Reoviridae/veterinária , Músculo Esquelético , Surtos de Doenças/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Orthoreovirus/genética
5.
J Fish Dis ; 45(11): 1733-1743, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35914108

RESUMO

The impact that escaped farmed fish may have on wild populations is of major concern for Atlantic salmon (Salmo salar) farming. Triploid fish, being infertile, were originally introduced to mitigate the genetic impact of escaped fish. In the recent years, an increase in the number of infectious salmon anaemia (ISA) outbreaks in Norway has been observed, mainly in the northern parts, which is also where farming of triploid fish has been licensed. The present study investigated the susceptibility of triploid Atlantic salmon to ISA both by field observations and experimental infections. Based on field observations, we found an increased susceptibility, with 9.4 increased odds to primary ISA outbreaks in triploid fish versus diploid fish at production-site level, and a tendency of increased odds (3.4) of ISA in triploid fish at individual cage level at sited with primary outbreaks. At some sites, ISA outbreaks were only diagnosed in cages with triploid fish and not in cages with diploid fish. Primary ISA outbreaks are the source for further spread of the disease, and it is noteworthy that in an experimental trial we found significantly more viral RNA in non-ISA-vaccinated triploid than in non-ISA-vaccinated diploid fish at the peak of the infection. Interestingly, the notable differences of susceptibility to ISA for non-ISA vaccinated diploid and triploid fish observed in field were not repeated experimentally. The possible increased risk of ISA should be considered when evaluating the costs and benefits of triploid salmon in farming. It is recommended to keep triploid and diploid fish in biosecure separated sites, or that triploid fish are not farmed at all.


Assuntos
Anemia , Doenças Transmissíveis , Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar , Anemia/epidemiologia , Animais , Doenças Transmissíveis/epidemiologia , Surtos de Doenças/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/genética , Isavirus/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , RNA Viral , Salmo salar/genética , Triploidia
6.
Vet Res ; 52(1): 131, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649601

RESUMO

Piscine orthoreovirus-1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). However, it has been shown that PRV-1 variants differ in their ability to induce HSMI. The objective of this work was to identify the PRV-1 variants in Norwegian aquaculture and their geographical distribution. Sequencing and subsequent analysis of the five genomic segments (S1, S4, M2, L1 and L2) putatively linked to virulence, made out the basis of the study. Thirty-seven Norwegian PRV-1 isolates were sequenced, and they grouped into eight genogroups based on combinations of the five analyzed genomic segments. Two groups were defined as high-virulent and two low-virulent, based on comparison with PRV-1 reference isolates with known virulence. The remaining four groups were of unknown virulence. The geographic distribution indicated a higher frequency of the high-virulent isolates in the mid- and northern regions. The present study confirms circulation of both high- and low-virulent isolates of PRV-1 in farmed Atlantic salmon in Norway. To reduce the impact of PRV-1 related disease, detection and differentiation between high- and low-virulent genogroups of PRV-1 could be a targeted approach for reduction of high-virulent variants.


Assuntos
Doenças dos Peixes/virologia , Genótipo , Orthoreovirus/genética , Orthoreovirus/patogenicidade , Infecções por Reoviridae/veterinária , Salmo salar , Animais , Aquicultura , Noruega , Orthoreovirus/classificação , Infecções por Reoviridae/virologia , Virulência/genética
7.
Fish Shellfish Immunol ; 108: 116-126, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285168

RESUMO

Pancreas disease (PD) caused by salmonid alphavirus subtype 3 (SAV3) is a serious disease with large economic impact on farmed Norwegian Atlantic salmon production despite years of use of oil-adjuvanted vaccines against PD (OAVs). In this study, two commercially available PD vaccines, a DNA vaccine (DNAV) and an OAV, were compared in an experimental setting. At approximately 1040° days (dd) at 12 °C post immunization, the fish were challenged with SAV3 by cohabitation 9 days after transfer to sea water. Sampling was done prior to challenge and at 19, 54, and 83 days post-challenge (dpc). When compared to the OAV and control (Saline) groups, the DNAV group had significantly higher SAV3 neutralizing antibody titers after the immunization period, significantly lower SAV3 viremia levels at 19 dpc, significantly reduced transmission of SAV3 to naïve fish in the latter part of the viremic phase, significantly higher weight gain post-challenge, and significantly reduced prevalence and/or severity of SAV-induced morphologic changes in target organs. The DNAV group had also significantly higher post-challenge survival compared to the Saline group, but not to the OAV group. The data suggest that use of DNAV may reduce the economic impact of PD by protecting against destruction of the pancreas tissue and subsequent growth impairment which is the most common and costly clinical outcome of this disease.


Assuntos
Infecções por Alphavirus/virologia , Alphavirus/imunologia , Doenças dos Peixes/prevenção & controle , Pancreatopatias/veterinária , Salmo salar , Vacinas Virais/imunologia , Infecções por Alphavirus/prevenção & controle , Animais , Doenças dos Peixes/virologia , Pancreatopatias/prevenção & controle , Pancreatopatias/virologia , Vacinas de DNA/imunologia
8.
J Fish Dis ; 44(7): 923-937, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33591590

RESUMO

Pancreas disease (PD) is a serious challenge in European salmonid aquaculture caused by salmonid alphavirus (SAV). In this study, we report the effect of immunization of Atlantic salmon with three attenuated infectious SAV3 strains with targeted mutations in a glycosylation site of the envelope E2 protein and/or in a nuclear localization signal in the capsid protein. In a pilot experiment, it was shown that the mutated viral strains replicated in fish, transmitted to naïve cohabitants and that the transmission had not altered the sequences. In the main experiment, the fish were immunized with the strains and challenged with SAV3 eight weeks after immunization. Immunization resulted in infection both in injected fish and 2 weeks later in the cohabitant fish, followed by a persistent but declining load of the mutated virus variants in the hearts. The immunized fish developed clinical signs and pathology consistent with PD prior to challenge. However, fish injected with the virus mutated in both E2 and capsid showed little clinical signs and had higher average weight gain than the groups immunized with the single mutated variants. The SAV strain used for challenge was not detected in the immunized fish indicating that these fish were protected against superinfection with SAV during the 12 weeks of the experiment.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/classificação , Doenças dos Peixes/prevenção & controle , Pancreatopatias/veterinária , Vacinas Virais/imunologia , Alphavirus/genética , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/virologia , Animais , Doenças dos Peixes/virologia , Imunização/veterinária , Pancreatopatias/prevenção & controle , Salmo salar , Vacinas Atenuadas
9.
Fish Shellfish Immunol ; 106: 374-383, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32738513

RESUMO

Salmonid alphavirus (SAV) is the etiological cause of pancreas disease (PD) in Atlantic salmon (Salmo salar). Several vaccines against SAV are in use, but PD still cause significant mortality and concern in European aquaculture, raising the need for optimal tools to monitor SAV immunity. To monitor and control the distribution of PD in Norway, all salmonid farms are regularly screened for SAV by RT-qPCR. While the direct detection of SAV is helpful in the early stages of infection, serological methods could bring additional information on acquired SAV immunity in the later stages. Traditionally, SAV antibodies are monitored in neutralization assays, but they are time-consuming and cumbersome, thus alternative assays are warranted. Enzyme-linked immunosorbent assays (ELISAs) have not yet been successfully used for anti-SAV antibody detection in aquaculture. We aimed to develop a bead-based immunoassay for SAV-specific antibodies. By using detergent-treated SAV particles as antigens, we detected SAV-specific antibodies in plasma collected from both a SAV challenge trial and a field outbreak of PD. Increased levels of SAV-specific antibodies were seen after most fish had become negative for viral RNA. The bead-based assay is time saving compared to virus neutralization assays, and suitable for non-lethal testing due to low sample size requirements. We conclude that the bead-based immunoassay for SAV antibody detection is a promising diagnostic tool to complement SAV screening in aquaculture.


Assuntos
Infecções por Alphavirus/veterinária , Doenças dos Peixes/imunologia , Pancreatopatias/veterinária , Salmo salar , Alphavirus/fisiologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Anticorpos Antivirais/sangue , Doenças dos Peixes/virologia , Imunoensaio/veterinária , Pancreatopatias/imunologia , Pancreatopatias/virologia
10.
J Fish Dis ; 43(9): 1039-1048, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32632958

RESUMO

Piscine orthoreovirus infects various salmonid fish species, and the infection is associated with diseases such as heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). There are no vaccines available or genetically selected resistant hosts that can efficiently control piscine orthoreovirus (PRV) infection. Currently, the only prophylactic measure against PRV is general biosecurity measures aiming to break the transmission cycle. Methods to eradicate infectious virus from contaminated facilities are desirable, but the knowledge on how to inactivate PRV is lacking. A major bottleneck for inactivation studies is the lack of ability to propagate PRV in cell culture. Therefore, in this study we developed an in vivo model for detection of infectious PRV particles after treatment of the virus with inactivation tools such as heat, pH, iodine, UV and commercially available disinfectants. The results show that standard iodine treatment is efficient in inactivation of the virus, and similarly are high and low pH extremes and treatment with Virocid, a commercially available disinfectant. A UV dose of at least 50 mJ/cm2 is required for inactivation, and the virus has high resistance against heat treatment.


Assuntos
Desinfetantes/farmacologia , Orthoreovirus/efeitos dos fármacos , Orthoreovirus/efeitos da radiação , Animais , Doenças dos Peixes/virologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Salmo salar , Raios Ultravioleta
11.
Vet Res ; 50(1): 14, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777130

RESUMO

Piscine orthoreovirus (PRV) mediated diseases have emerged throughout salmonid aquaculture. Three PRV subtypes are currently reported as causative agents of or in association with diseases in different salmonid species. PRV-1 causes heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar) and is associated with jaundice syndrome in farmed chinook salmon (Oncorhynchus tshawytscha). PRV-2 causes erythrocytic inclusion body syndrome (EIBS) in coho salmon in Japan. PRV-3 has recently been associated with a disease in rainbow trout (Oncorhynchus mykiss) characterized by anaemia, heart and red muscle pathology; to jaundice syndrome in coho salmon (Oncorhynchus kisutch). In this study, we conducted a 10-week long experimental infection trial in rainbow trout with purified PRV-3 particles to assess the causal relationship between the virus and development of heart inflammation. The monitoring the PRV-3 load in heart and spleen by RT-qPCR shows a progressive increase of viral RNA to a peak, followed by clearance without a measurable change in haematocrit. The development of characteristic cardiac histopathological findings occurred in the late phase of the trial and was associated with increased expression of CD8+, indicating cytotoxic T cell proliferation. The findings indicate that, under these experimental conditions, PRV-3 infection in rainbow trout act similarly to PRV-1 infection in Atlantic salmon with regards to immunological responses and development of heart pathology, but not in the ability to establish a persistent infection.


Assuntos
Doenças dos Peixes/imunologia , Cardiopatias/veterinária , Inflamação/veterinária , Oncorhynchus mykiss , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Animais , Doenças dos Peixes/virologia , Cardiopatias/imunologia , Cardiopatias/virologia , Imunidade Inata , Inflamação/imunologia , Inflamação/virologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia
12.
J Fish Dis ; 42(1): 97-108, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30370677

RESUMO

Salmonid alphavirus (SAV) causes pancreas disease (PD) in farmed Atlantic salmon (Salmo salar L.), and exocrine pancreas tissue is a primary target of the virus. Digestive enzymes secreted by the exocrine pancreas break down macromolecules in feed into smaller molecules that can be absorbed. The effect of SAV infection on digestion has been poorly studied. In this study, longitudinal observations of PD outbreaks caused by SAV subtype 2 (SAV2) in Atlantic salmon at two commercial sea sites were performed. The development of PD was assessed by measurement of SAV2 RNA load and evaluation of histopathological lesions typical of PD. Reduced digestion of both protein and fat co-varied with the severity of PD lesions and viral load. Also, the study found that during a PD outbreak, the pen population comprise several subpopulations, with different likelihoods of being sampled. The body length of sampled fish deviated from the expected increase or steady state over time, and the infection status in sampled fish deviated from the expected course of infection in the population. Both conditions indicate that disease status of the individual fish influenced the likelihood of being sampled, which may cause sampling bias in population studies.


Assuntos
Infecções por Alphavirus/veterinária , Doenças dos Peixes/virologia , Pancreatopatias/virologia , Salmo salar/virologia , Alphavirus , Animais , Aquicultura , Viés , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Digestão/fisiologia , Surtos de Doenças/veterinária , Pancreatopatias/metabolismo , Projetos de Pesquisa , Salmo salar/crescimento & desenvolvimento , Carga Viral/veterinária
13.
J Fish Dis ; 42(6): 935-945, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972792

RESUMO

Melanized focal changes in skeletal muscle of farmed Atlantic salmon (Salmo salar) are a major quality problem. The aetiology is unknown, but infection with Piscine orthoreovirus (PRV) has been associated with the condition. Here, we addressed the pathogenesis of red and melanized focal changes and their association with PRV. First, a population of farmed fish (PRV-negative prior to sea transfer) was sequentially investigated throughout the seawater period. The fish were autopsied and tested for PRV infection. Muscular changes were described by macroscopy and histology, and a classification system was established. Second, in an experimental infection trial, PRV was injected intramuscularly to induce changes. The farmed fish was gradually infected with PRV. Red focal changes occurred throughout the observation period with a low prevalence regardless of PRV status. Melanized changes were highly diverse and their prevalence increased during the trial. Changes of low macroscopic grade and histological category were more prevalent in PRV-negative fish. Diffuse granulomatous melanized changes only occurred after PRV infection. No muscular changes were observed in the experimentally challenged fish. Our studies do not indicate that PRV infection causes red focal changes, but seems important in the development of granulomatous melanized changes.


Assuntos
Doenças dos Peixes/virologia , Músculo Esquelético/patologia , Orthoreovirus/patogenicidade , Infecções por Reoviridae/veterinária , Salmo salar/virologia , Animais , Aquicultura , Doenças dos Peixes/patologia , Melaninas , Músculo Esquelético/virologia , Noruega , RNA Viral/genética , Infecções por Reoviridae/patologia
14.
J Fish Dis ; 42(8): 1107-1118, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31140193

RESUMO

Piscine orthoreovirus genotype 1 (PRV-1) is widespread in farmed Atlantic salmon (Salmo salar L.) populations in northern Europe, Canada and Chile. PRV-1 occurs in wild fish in Norway and Canada; however, little information of its geographical distribution in wild populations is currently available, and the effect of PRV-1 infection in wild populations is currently unknown. In this study, we present the findings of a survey conducted on 1,130 wild salmonids sampled in Denmark, Sweden, Ireland, Faroe Islands, France, Belgium and Greenland between 2008 and 2017. PRV-1 is reported for the first time in wild salmonids in Denmark, Sweden, Faroe Island and Ireland. The annual PRV-1 prevalence ranged from 0% in France, Belgium and Greenland to 43% in Faroe Islands. In total, 66 samples tested positive for PRV-1, including Atlantic salmon broodfish returning to spawn and Atlantic salmon collected at the feeding ground north of Faroe Islands. The phylogenetic analysis of S1 sequences of the PRV-1 isolates obtained in this survey did not show systematic geographical distribution. This study sheds light on the spread and genetic diversity of the virus identified in populations of free-living fish and provides rationale for screening wild broodfish used in restocking programmes.


Assuntos
Doenças dos Peixes/epidemiologia , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Salmonidae , Animais , Oceano Atlântico/epidemiologia , Europa (Continente)/epidemiologia , Doenças dos Peixes/virologia , Variação Genética , Genótipo , Orthoreovirus/genética , Prevalência , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Salmo salar , Truta
15.
Vet Res ; 49(1): 30, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534748

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is endemic in farmed rainbow trout in continental Europe and in various salmonid fish species at the Pacific coast of North America. IHN has never occurred in European Atlantic salmon (Salmo salar) farms, but is considered as a major threat for the European salmon industry. Another virus, Piscine orthoreovirus (PRV), is widespread in the sea phase of Atlantic salmon, and is identified as the causative agent of heart and skeletal muscle inflammation. The aim of this study was to investigate the interactions between a primary PRV infection and a secondary IHNV infection under experimental conditions. A PRV cohabitation challenge was performed with Atlantic salmon. At peak of PRV viremia the fish were challenged by immersion with an IHNV genogroup E isolate. Clinical signs and morbidity were monitored. Target organs were sampled at selected time points to assess viral loads of both pathogens. Antiviral immune response and presence of histopathological findings were also investigated. Whereas the PRV-negative/IHNV positive group suffered significant decrease in survival caused by IHNV, the PRV infected groups did not suffer any morbidity and showed negligible levels of IHNV infection. Antiviral response genes were induced, as measured in spleen samples, from PRV infected fish prior to IHNV challenge. In conclusion, PRV-infection protects Atlantic salmon against IHNV infection and morbidity, most likely by inducing a protective innate antiviral response.


Assuntos
Doenças dos Peixes/imunologia , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Infecções por Reoviridae/veterinária , Infecções por Rhabdoviridae/veterinária , Salmo salar , Animais , Doenças dos Peixes/virologia , Genótipo , Vírus da Necrose Hematopoética Infecciosa/genética , Orthoreovirus/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia
16.
Virus Genes ; 54(2): 199-214, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29218433

RESUMO

The infectious salmon anaemia virus (ISAV) is a piscine virus, a member of Orthomyxoviridae family. It encodes at least 10 proteins from eight negative-strand RNA segments. Since ISAV belongs to the same virus family as Influenza A virus, with similarities in protein functions, they may hence be characterised by analogy. Like NS1 protein of Influenza A virus, s8ORF2 of ISAV is implicated in interferon antagonism and RNA-binding functions. In this study, we investigated the role of s8ORF2 in RNAi suppression in a well-established Agrobacterium transient suppression assay in stably silenced transgenic Nicotiana xanthi. In addition, s8ORF2 was identified as a novel interactor with SsMov10, a key molecule responsible for RISC assembly and maturation in the RNAi pathway. This study thus sheds light on a novel route undertaken by viral proteins in promoting viral growth, using the host RNAi machinery.


Assuntos
Proteínas de Peixes/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Isavirus/fisiologia , Proteínas de Ligação a RNA/metabolismo , Salmão , Proteínas não Estruturais Virais/metabolismo , Animais , Isavirus/imunologia , Ligação Proteica , Interferência de RNA
18.
J Fish Dis ; 41(9): 1411-1419, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29926926

RESUMO

Heart- and skeletal muscle inflammation (HSMI) caused by infection with Piscine orthoreovirus (PRV) is one of the most common viral diseases in farmed Atlantic salmon (Salmo salar) in Norway, and disease outbreaks have been reported in most countries with large-scale Atlantic salmon aquaculture. Currently there is no vaccine available for protection against HSMI, partly due to the lack of a cell line for efficient virus propagation. Erythrocytes are the primary target cells for PRV in vivo and a potential source for isolation of PRV particles. In this study, PRV was purified from infected erythrocytes, inactivated and used in a vaccination trial against HSMI. A single immunization with adjuvanted, inactivated PRV induced protection against HSMI in Atlantic salmon infected by virus injection 6 weeks later, while a moderate protection was obtained in fish infected through natural transmission, i.e. cohabitation. The PRV vaccine significantly reduced PRV loads and histopathological lesions typical for HSMI compared to the unvaccinated control group. This is the first demonstration of protective vaccination against PRV, and promising for future control of HSMI in Atlantic salmon aquaculture.


Assuntos
Doenças dos Peixes/prevenção & controle , Inflamação/prevenção & controle , Orthoreovirus/imunologia , Infecções por Reoviridae/veterinária , Salmo salar/imunologia , Vacinas Virais/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Aquicultura , Eritrócitos/virologia , Doenças dos Peixes/imunologia , Coração/fisiopatologia , Imunização , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Miosite/patologia , Noruega , Infecções por Reoviridae/prevenção & controle , Infecções por Reoviridae/virologia , Salmo salar/anatomia & histologia , Salmo salar/virologia , Vacinas de Produtos Inativados/administração & dosagem , Carga Viral
19.
Fish Shellfish Immunol ; 64: 308-319, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28323214

RESUMO

Heart and skeletal muscle inflammation (HSMI) and pancreas disease (PD) cause substantial losses in Atlantic salmon (Salmo salar) aquaculture. The respective causative agents, Piscine orthoreovirus (PRV) and Salmonid alphavirus (SAV), are widespread and often concurrently present in farmed salmon. An experimental infection in Atlantic salmon was conducted to study the interaction between the two viruses, including the immunological mechanisms involved. The co-infected fish were infected with PRV four or ten weeks before they were infected with SAV. The SAV RNA level and the PD specific lesions were significantly lower in co-infected groups compared to the group infected by only SAV. The expression profiles of a panel of innate antiviral response genes and the plasma SAV neutralization titers were examined. The innate antiviral response genes were in general upregulated for at least ten weeks after the primary PRV infection. Plasma from co-infected fish had lower SAV neutralizing titers compared to the controls infected with only SAV. Plasma from some individuals infected with only PRV neutralized SAV, but heat treatment removed this effect. Field studies of co-infected fish populations indicated a negative correlation between the two viruses in randomly sampled apparently healthy fish, in line with the experimental findings, but a positive correlation in moribund or dead fish. The results indicate that the innate antiviral response induced by PRV may temporary protect against a secondary SAV infection.


Assuntos
Infecções por Alphavirus/veterinária , Proteção Cruzada , Doenças dos Peixes/imunologia , Imunidade Inata , Infecções por Reoviridae/veterinária , Salmo salar , Alphavirus/fisiologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Orthoreovirus/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia
20.
Vet Res ; 47: 5, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743679

RESUMO

Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation in farmed Atlantic salmon. The virus is ubiquitous and found in both farmed and wild salmonid fish. It belongs to the family Reoviridae, closely related to the genus Orthoreovirus. The PRV genome comprises ten double-stranded RNA segments encoding at least eight structural and two non-structural proteins. Erythrocytes are the major target cells for PRV. Infected erythrocytes contain globular inclusions resembling viral factories; the putative site of viral replication. For the mammalian reovirus (MRV), the non-structural protein µNS is the primary organizer in factory formation. The analogous PRV protein was the focus of the present study. The subcellular location of PRV µNS and its co-localization with the PRV σNS, µ2 and λ1 proteins was investigated. We demonstrated that PRV µNS forms dense globular cytoplasmic inclusions in transfected fish cells, resembling the viral factories of MRV. In co-transfection experiments with µNS, the σNS, µ2 and λ1 proteins were recruited to the globular structures. The ability of µNS to recruit other PRV proteins into globular inclusions indicates that it is the main viral protein involved in viral factory formation and pivotal in early steps of viral assembly.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Orthoreovirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Peixes , Dados de Sequência Molecular , Orthoreovirus/genética , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa