Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(11): 6061-6067, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33511734

RESUMO

Persulfides (R-SSH) have been hypothesized as potent redox modulators and signaling compounds. Reported herein is the synthesis, characterization, and in vivo evaluation of a persulfide donor that releases N-acetyl cysteine persulfide (NAC-SSH) in response to the prokaryote-specific enzyme nitroreductase. The donor, termed NDP-NAC, decomposed in response to E. coli nitroreductase, resulting in release of NAC-SSH. NDP-NAC elicited gastroprotective effects in mice that were not observed in animals treated with control compounds incapable of persulfide release or in animals treated with Na2 S. NDP-NAC induced these effects by the upregulation of beneficial small- and medium-chain fatty acids and through increasing growth of Turicibacter sanguinis, a beneficial gut bacterium. It also decreased the populations of Synergistales bacteria, opportunistic pathogens implicated in gastrointestinal infections. This study reveals the possibility of maintaining gut health or treating microbiome-related diseases by the targeted delivery of reactive sulfur species.


Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Pró-Fármacos/farmacologia , Sulfetos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Cinética , Listeria monocytogenes/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Staphylococcus aureus/efeitos dos fármacos , Sulfetos/síntese química , Sulfetos/química
2.
J Nanobiotechnology ; 18(1): 16, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959180

RESUMO

BACKGROUND: The clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 protein system is a revolutionary tool for gene therapy. Despite promising reports of the utility of CRISPR-Cas9 for in vivo gene editing, a principal problem in implementing this new process is delivery of high molecular weight DNA into cells. RESULTS: Using poly(lactic-co-glycolic acid) (PLGA), a nanoparticle carrier was designed to deliver a model CRISPR-Cas9 plasmid into primary bone marrow derived macrophages. The engineered PLGA-based carriers were approximately 160 nm and fluorescently labeled by encapsulation of the fluorophore 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). An amine-end capped PLGA encapsulated 1.6 wt% DNA, with an encapsulation efficiency of 80%. Release studies revealed that most of the DNA was released within the first 24 h and corresponded to ~ 2-3 plasmid copies released per nanoparticle. In vitro experiments conducted with murine bone marrow derived macrophages demonstrated that after 24 h of treatment with the PLGA-encapsulated CRISPR plasmids, the majority of cells were positive for TIPS pentacene and the protein Cas9 was detectable within the cells. CONCLUSIONS: In this work, plasmids for the CRISPR-Cas9 system were encapsulated in nanoparticles comprised of PLGA and were shown to induce expression of bacterial Cas9 in murine bone marrow derived macrophages in vitro. These results suggest that this nanoparticle-based plasmid delivery method can be effective for future in vivo applications of the CRISPR-Cas9 system.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Proteína 9 Associada à CRISPR/metabolismo , DNA/química , Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Macrófagos/metabolismo , Camundongos , Compostos de Organossilício/química , Plasmídeos , Transfecção
3.
J Immunol ; 199(7): 2377-2387, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28848064

RESUMO

B cell lymphoma-6 (Bcl-6) is a transcriptional repressor that is required for the differentiation of T follicular helper (TFH) cell populations. Currently, the molecular mechanisms underlying the transcriptional regulation of Bcl-6 expression are unclear. In this study, we have identified the Ikaros zinc finger transcription factors Aiolos and Ikaros as novel regulators of Bcl-6. We found that increased expression of Bcl-6 in CD4+ Th cell populations correlated with enhanced enrichment of Aiolos and Ikaros at the Bcl6 promoter. Furthermore, overexpression of Aiolos or Ikaros, but not the related family member Eos, was sufficient to induce Bcl6 promoter activity. Intriguingly, STAT3, a known Bcl-6 transcriptional regulator, physically interacted with Aiolos to form a transcription factor complex capable of inducing the expression of Bcl6 and the TFH-associated cytokine receptor Il6ra Importantly, in vivo studies revealed that the expression of Aiolos was elevated in Ag-specific TFH cells compared with that observed in non-TFH effector Th cells generated in response to influenza infection. Collectively, these data describe a novel regulatory mechanism through which STAT3 and the Ikaros zinc finger transcription factors Aiolos and Ikaros cooperate to regulate Bcl-6 expression.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Fator de Transcrição Ikaros/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Fator de Transcrição STAT3/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Fator de Transcrição Ikaros/genética , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/genética , Linfócitos T Auxiliares-Indutores/metabolismo , Transativadores/genética , Transativadores/metabolismo
4.
Crit Rev Immunol ; 36(4): 283-314, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28322135

RESUMO

Recent advances have revealed significant insight into inflammatory bowel disease (IBD) pathobiology. Ulcerative colitis and Crohn's disease, the chronic relapsing clinical manifestations of IBD, are complex disorders with genetic and environmental influences. These diseases are associated with the dysregulation of immune tolerance, excessive inflammation, and damage to the epithelial cell barrier. Increasing evidence indicates that pattern recognition receptors, including Toll-like receptors (TLRs) and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs), function to maintain immune system homeostasis, modulate the gastrointestinal microbiome, and promote proper intestinal epithelial cell regeneration and repair. New insights have revealed that NLR family members are essential components in maintaining this immune system homeostasis. To date, the vast majority of studies associated with NLRs have focused on family members that form a multiprotein signaling platform called the inflammasome. These signaling complexes are responsible for the cleavage and activation of the potent pleotropic cytokines IL-1ß and IL-18, and they facilitate a unique form of cell death defined as pyroptosis. In this review, we summarize the current paradigms associated with NLR inflammasome maintenance of immune system homeostasis in the gastrointestinal system. New concepts related to canonical and noncanonical inflammasome signaling, as well as the implications of classical and alternative inflammasomes in IBD pathogenesis, are also reviewed.


Assuntos
Inflamassomos/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Proteínas/metabolismo , Animais , Microbioma Gastrointestinal , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Doenças Inflamatórias Intestinais/complicações , Proteínas de Repetições Ricas em Leucina , Proteínas NLR/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
5.
Nanomedicine ; 13(3): 1255-1266, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28040495

RESUMO

Nanoparticle based drug delivery platforms have the potential to transform disease treatment paradigms and therapeutic strategies, especially in the context of pulmonary medicine. Once administered, nanoparticles disperse throughout the lung and many are phagocytosed by macrophages. However, there is a paucity of knowledge regarding cellular up-take dynamics of nanoparticles due largely to macrophage heterogeneity. To address this issue, we sought to better define nanoparticle up-take using polarized M1 and M2 macrophages and novel TIPS-pentacene loaded PEO-PDLLA nanoparticles. Our data reveal that primary macrophages polarized to either M1 or M2 phenotypes have similar levels of nanoparticle phagocytosis. Similarly, M1 and M2 polarized macrophages isolated from the lungs of mice following either acute (Th1) or allergic (Th2) airway inflammation also demonstrated equivalent levels of nanoparticle up-take. Together, these studies provide critical benchmark information pertaining to cellular up-take dynamics and biodistribution of nanoparticles in the context of clinically relevant inflammatory microenvironments.


Assuntos
Portadores de Fármacos/metabolismo , Compostos de Epóxi/metabolismo , Macrófagos/metabolismo , Nanopartículas/metabolismo , Compostos de Organossilício/administração & dosagem , Compostos de Organossilício/farmacocinética , Poliésteres/metabolismo , Animais , Asma , Células Cultivadas , Portadores de Fármacos/química , Compostos de Epóxi/química , Pulmão/metabolismo , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Poliésteres/química , Distribuição Tecidual
6.
Front Oncol ; 10: 843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528898

RESUMO

New methods of tumor ablation have shown exciting efficacy in pre-clinical models but often demonstrate limited success in the clinic. Due to a lack of quality or quantity in primary malignant tissue specimens, therapeutic development and optimization studies are typically conducted on healthy tissue or cell-line derived rodent tumors that don't allow for high resolution modeling of mechanical, chemical, and biological properties. These surrogates do not accurately recapitulate many critical components of the tumor microenvironment that can impact in situ treatment success. Here, we propose utilizing patient-derived xenograft (PDX) models to propagate clinically relevant tumor specimens for the optimization and development of novel tumor ablation modalities. Specimens from three individual pancreatic ductal adenocarcinoma (PDAC) patients were utilized to generate PDX models. This process generated 15-18 tumors that were allowed to expand to 1.5 cm in diameter over the course of 50-70 days. The PDX tumors were morphologically and pathologically identical to primary tumor tissue. Likewise, the PDX tumors were also found to be physiologically superior to other in vitro and ex vivo models based on immortalized cell lines. We utilized the PDX tumors to refine and optimize irreversible electroporation (IRE) treatment parameters. IRE, a novel, non-thermal tumor ablation modality, is being evaluated in a diverse range of cancer clinical trials including pancreatic cancer. The PDX tumors were compared against either Pan02 mouse derived tumors or resected tissue from human PDAC patients. The PDX tumors demonstrated similar changes in electrical conductivity and Joule heating following IRE treatment. Computational modeling revealed a high similarity in the predicted ablation size of the PDX tumors that closely correlate with the data generated with the primary human pancreatic tumor tissue. Gene expression analysis revealed that IRE treatment resulted in an increase in biological pathway signaling associated with interferon gamma signaling, necrosis and mitochondria dysfunction, suggesting potential co-therapy targets. Together, these findings highlight the utility of the PDX system in tumor ablation modeling for IRE and increasing clinical application efficacy. It is also feasible that the use of PDX models will significantly benefit other ablation modality testing beyond IRE.

7.
Methods Mol Biol ; 1960: 149-160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798529

RESUMO

Listeria monocytogenes, a Gram-positive facultative intracellular pathogen, has been widely used as a model for studying the immune response. Here, we describe a protocol for the systemic infection of mice with L. monocytogenes, followed by isolation of lymphocytes from spleens and lymph nodes. We also include details on how to culture and store L. monocytogenes, as well as the specifics for fluorescence-activated cell sorting (FACS) for CD4+ cells in response to the systemic infection. This protocol can be adapted by changing the dosage of L. monocytogenes for a more or less aggressive infection and/or sorting for other immune cell subtypes of interest.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Citometria de Fluxo , Listeriose/imunologia , Listeriose/microbiologia , Camundongos
8.
Adv Sci (Weinh) ; 6(3): 1801309, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30775227

RESUMO

Cancer drug delivery remains a formidable challenge due to systemic toxicity and inadequate extravascular transport of nanotherapeutics to cells distal from blood vessels. It is hypothesized that, in absence of an external driving force, the Salmonella enterica serovar Typhimurium could be exploited for autonomous targeted delivery of nanotherapeutics to currently unreachable sites. To test the hypothesis, a nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) is developed in which the functional capabilities of the tumor-targeting S. Typhimurium VNP20009 are interfaced with poly(lactic-co-glycolic acid) nanoparticles. The impact of nanoparticle conjugation is evaluated on NanoBEADS' invasion of cancer cells and intratumoral transport in 3D tumor spheroids in vitro, and biodistribution in a mammary tumor model in vivo. It is found that intercellular (between cells) self-replication and translocation are the dominant mechanisms of bacteria intratumoral penetration and that nanoparticle conjugation does not impede bacteria's intratumoral transport performance. Through the development of new transport metrics, it is demonstrated that NanoBEADS enhance nanoparticle retention and distribution in solid tumors by up to a remarkable 100-fold without requiring any externally applied driving force or control input. Such autonomous biohybrid systems could unlock a powerful new paradigm in cancer treatment by improving the therapeutic index of chemotherapeutic drugs and minimizing systemic side effects.

9.
J Innate Immun ; 11(5): 416-431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30759441

RESUMO

The NLRP1 inflammasome attenuates inflammatory bowel disease (IBD) progression and colitis-associated tumorigenesis. A possible mechanism postulates that the lack of the NLRP1 inflammasome creates permissive niches in the gut for pathogenic bacteria to flourish, causing dysbiosis and increased IBD susceptibility. To evaluate this hypothesis, we characterized the gut microbiome of wild-type, Nlrp1b-/-, and Asc-/- mice under naïve conditions by sequencing the V3 region of the 16s rRNA gene. For both genetically modified mouse lines, the microbiome composition reflected overrepresentation of bacteria associated with dysbiosis relative to wild-type animals. Measurement of short- and medium-chain fatty acids by mass spectrometry further revealed significant differences between genotypes. However, prior to concluding that the NLRP1 inflammasome plays a role in regulating the composition of the microbiome, we evaluated two additional strategies for cohousing wild-type and Nlrp1b-/- mice: breeding homozygous parents and cohousing at weaning, and breeding from heterozygous parents and cohousing littermates. We found that maternal influence was the greater predictor of microbiome composition rather than genotype. With the rise in microbiome research across disciplines, our study should be viewed as a cautionary example that illustrates the importance of careful breeding and housing strategies when evaluating host-microbiome interactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Microbioma Gastrointestinal/genética , Abrigo para Animais , Inflamassomos/genética , Mães , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Colo/metabolismo , Colo/microbiologia , Disbiose/microbiologia , Ácidos Graxos/química , Feminino , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Ribossômico 16S/genética , Projetos de Pesquisa
10.
EBioMedicine ; 44: 112-125, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31130474

RESUMO

BACKGROUND: Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. METHODS: Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. FINDINGS: H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. INTERPRETATION: Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity.


Assuntos
Ablação por Cateter , Morte Celular , Eletroporação , Imunomodulação , Neoplasias/imunologia , Animais , Ablação por Cateter/métodos , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Eletroporação/métodos , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Sistema Imunitário , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Transdução de Sinais , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Immunol ; 10: 2714, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849940

RESUMO

Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter.


Assuntos
Exposição Ambiental , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos/metabolismo , Titânio/efeitos adversos , Animais , Apoptose/genética , Apoptose/imunologia , Biomarcadores , Citocinas/metabolismo , Citotoxicidade Imunológica , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Testes de Função Respiratória , Transdução de Sinais
12.
Front Immunol ; 9: 1993, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233586

RESUMO

From immunology to neuroscience, interactions between the microbiome and host are increasingly appreciated as potent drivers of health and disease. Epidemiological studies previously identified compelling correlations between perinatal microbiome insults and neurobehavioral outcomes, the mechanistic details of which are just beginning to take shape thanks to germ-free and antibiotics-based animal models. This review summarizes parallel developments from clinical and preclinical research that suggest neuroactive roles for gut bacteria and their metabolites. We also examine the nascent field of microbiome-microglia crosstalk research, which includes pharmacological and genetic strategies to inform functional capabilities of microglia in response to microbial programming. Finally, we address an emerging hypothesis behind neurodevelopmental disorders, which implicates microbiome dysbiosis in the atypical programming of neuroimmune cells, namely microglia.


Assuntos
Transtorno do Espectro Autista/imunologia , Disbiose/imunologia , Microbiota , Microglia/fisiologia , Transtornos do Neurodesenvolvimento/imunologia , Neuroimunomodulação , Animais , Transtorno do Espectro Autista/microbiologia , Comportamento , Reprogramação Celular , Modelos Animais de Doenças , Disbiose/microbiologia , Humanos , Lactobacillus , Transtornos do Neurodesenvolvimento/microbiologia
13.
J Leukoc Biol ; 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389019

RESUMO

Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies.

14.
Methods Mol Biol ; 1831: 179-190, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30051432

RESUMO

Intranasal administration is a highly effective route for drug delivery and biodistribution studies. Indeed, this route of delivery has become the method of choice to distribute diverse pharmacological agents both locally and systemically. In the majority of preclinical animal models and in human patients, intranasal administration is the preferred method to deliver therapeutic agents to the airways and lungs. However, issues with drug stability and controlled release in the respiratory tract are common problems with many therapeutic agents. Nanoparticle delivery via intranasal administration has tremendous potential to circumvent these common issues. Over the past 30 years nanoparticles have gained increased interest as therapeutic delivery vehicles and as tools for improved bioimaging. Integral to the success of nanoparticles in drug delivery and biodistribution is the utilization of mouse models to characterize therapeutic strategies under physiologically relevant in situ conditions. Here, we describe a model of nanoparticle administration to the lungs utilizing intranasal administration and discuss a variety of highly useful techniques to evaluate nanoparticle up-take, biodistribution, and immune response. While these protocols have been optimized for intranasal administration of common fluorescently labeled nanoparticles, they can be applied to any nanoparticle or drug delivery system of interest targeting the lungs and airways.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Pulmão/metabolismo , Modelos Biológicos , Nanopartículas/química , Administração Intranasal , Animais , Feminino , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Imunidade , Masculino , Camundongos , Nanopartículas/administração & dosagem , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa