Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(44): 24089-24097, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37876220

RESUMO

We report the synthesis of a series of pseudo-1D coordination polymer (CP) materials with the formula FeyCo1-yBTT (BTT = 1,3,5-benzenetrithiolate). These materials were structurally characterized by PXRD Rietveld, EXAFS, and PDF analyses, revealing that the CP superstructure enables a continuous and isomorphous alloy between the two homometallic compounds. Lower Fe loadings exhibit emergent spin glass magnetic behavior, such as memory effects and composition-dependent spin glass response time constants ranging from 6.9 × 10-9 s to 1.8 × 10-6 s. These data are consistent with the formation of spin clusters within the lattice. The magnetic behavior in these materials was modeled via replica exchange Monte Carlo simulation, which provides a good match for the experimentally measured spin glassing and magnetic phase transitions. These findings underscore how the rigid superstructure of CP and MOF scaffolds can enable the systematic tuning of physical properties, such as the spin glass behavior described here.

2.
J Am Chem Soc ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018716

RESUMO

Two-dimensional (2D) inorganic materials have emerged as exciting platforms for (opto)electronic, thermoelectric, magnetic, and energy storage applications. However, electronic redox tuning of these materials can be difficult. Instead, 2D metal-organic frameworks (MOFs) offer the possibility of electronic tuning through stoichiometric redox changes, with several examples featuring one to two redox events per formula unit. Here, we demonstrate that this principle can be extended over a far greater span with the isolation of four discrete redox states in the 2D MOFs LixFe3(THT)2 (x = 0-3, THT = triphenylenehexathiol). This redox modulation results in 10,000-fold greater conductivity, p- to n-type carrier switching, and modulation of antiferromagnetic coupling. Physical characterization suggests that changes in carrier density drive these trends with relatively constant charge transport activation energies and mobilities. This series illustrates that 2D MOFs are uniquely redox flexible, making them an ideal materials platform for tunable and switchable applications.

3.
Inorg Chem ; 62(6): 2817-2825, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36728752

RESUMO

The synthesis, structure, and magnetic properties of two novel, pseudo-one-dimensional (1D) chromium thiolate coordination polymers (CPs), CrBTT and Cr2BDT3, are reported. The structures of these materials were determined using X-ray powder diffraction revealing highly symmetric 1D chains embedded within a CP framework. The magnetic coupling of this chain system was measured by SQUID magnetometry, revealing a switch from antiferromagnetic to ferromagnetic behavior dictated by the angular geometrical constraints within the CP scaffold consistent with the Goodenough-Kanamori-Anderson rules. Intrachain magnetic coupling constants JNN of -32.0 and +5.7 K were found for CrBTT and Cr2BDT3, respectively, using the 1D Bonner-Fisher model of magnetism. The band structure of these materials has also been examined by optical spectroscopy and density functional theory calculations revealing semiconducting behavior. Our findings here demonstrate how CP scaffolds can support idealized low-dimensional structural motifs and dictate magnetic interactions through tuning of geometry and inter-spin couplings.

4.
Langmuir ; 36(33): 9944-9951, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32787121

RESUMO

Using nanoscale building blocks to construct hierarchical materials is a radical new branch point in materials discovery that promises new structures and emergent functionality. Understanding the design principles that govern nanoparticle assembly is critical to moving this field forward. By exploiting mixed ligand environments to target patchy nanoparticle surfaces, we have demonstrated a novel method of colloidal quantum dot (QD) assembly that gives rise to 2D structures. The equilibration of solutions of spherical and quasispherical QDs, including CdS, CdSe, and InP, with 2,2'-bipyridine-5,5'-diacrylic acid resulted in the preferential formation of 2D assemblies over the course of days as determined by transmission electron microscopy analysis. Small-angle X-ray scattering confirms the existence of the QD assemblies in solution. The dependence of the assembly on linker properties (length and rigidity), linker concentration, and total concentration was investigated, together with the data point to a mechanism involving ligand redistribution to create a patchy surface that maximizes the steric repulsion of neighboring QDs. By operating in an underexchanged regime, the arising patchiness results in enthalpically preferred directions of cross-linking that can be accessed by thermal equilibration.

5.
Acc Chem Res ; 51(11): 2803-2810, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30387984

RESUMO

Clusters are unique molecular species that can be viewed as a bridge between phases of matter and thus between disciplines of chemistry. The structural and compositional complexity observed in cluster chemistry serves as an inspiration to the material science community and motivates our search for new phases of matter. Moreover, the formation of kinetically persistent cluster molecules as intermediates in the nucleation of crystals makes these materials of great interest for determining and controlling mechanisms of crystal growth. Our lab developed a keen interest in clusters insofar as they relate to the nucleation of nanoscale semiconductors and the modeling of postsynthetic reaction chemistry of colloidal materials. In particular, our discovery of a structurally unique In37P20X51 (X = carboxylate) cluster en route to InP quantum dots has catalyzed our interest in all aspects of cluster conversion, including the use of clusters as precursors to larger nanoscale colloids and as platforms for examining postsynthetic reaction chemistry. This Account is presented in four parts. First, we introduce cluster chemistry in a historical context with a focus on main group, metallic, and semiconductor clusters. We put forward the concept of rational, mechanism-driven design of colloidal semiconductor nanocrystals as the primary motivation for the studies we have undertaken. Second, we describe the role of clusters as intermediates both in the synthesis of well-known material phases and in the discovery of unprecedented nanomaterial structures. The primary distinction between these two approaches is one of kinetics; in the case of well-known phases, we are often operating under high-temperature thermolysis conditions, whereas for materials discovery, we are discovering strategies to template the growth of kinetic phases as dictated by the starting cluster structure. Third, we describe reactions of clusters as model systems for their larger nanomaterial progeny with a primary focus on cation exchange. In the case of InP, cation exchange in larger nanostructures has been challenging due to the covalent nature of the crystal lattice. However, in the higher energy, strained cluster intermediates, cation exchange can be accomplished even at room temperature. This opens opportunities for accessing doped and alloyed nanomaterials using postsynthetically modified clusters as single-source precursors. Finally, we present surface chemistry of clusters as the gateway to subsequent chemistry and reactivity, and as an integral component of cluster structure and stability. Taken as a whole, we hope to make a compelling case for using clusters as a platform for mechanistic investigation and materials discovery.

6.
Inorg Chem ; 58(4): 2840-2847, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30714365

RESUMO

The surface chemistry of a colloidal nanoparticle is intrinsic to both its structure and function. It is therefore necessary to characterize the surfaces of colloidal materials to rationally underpin any synthetic, catalytic, or transformative mechanisms they enable. Here we characterize the surface properties of colloidal InP clusters and quantum dots by examining the binding of traditional stabilizing ligands including carboxylates, phosphonates, and thiolates. By using the In37P20X51 (X = carboxylate) cluster species as an ideally monodisperse and well-defined starting scaffold, we quantify surface-exchange equilibria. Using quantitative 1H and 31P NMR spectroscopy, we show that 1:1 metathesis-type binding models are insufficient to fully describe the surface dynamics. In particular, for the case of the highly reversible carboxylate ligand exchange, a more detailed isotherm approach using a two-site, competitive model is necessary. This model is used to deconvolute L- and X-type binding modalities. We additionally quantify the reversible and irreversible ligand-exchange reactions observed in the thiolate and phosphonate  systems.

7.
Angew Chem Int Ed Engl ; 57(7): 1908-1912, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29316053

RESUMO

We have synthesized InP nanocrystals of an unprecedented crystal phase at low temperature (35-100 °C) by templated growth of InP magic-sized clusters. With the addition of stoichiometric equivalents of P(SiMe3 )3 to the starting cluster, we demonstrate nanocrystal growth mediated through a partial dissolution and recrystallization pathway. This growth process was monitored using a combination of in situ UV/Vis and 31 P NMR spectroscopy, revealing the intermediacy of smaller cluster species of higher symmetry. The nanocrystals that result from this templated growth exhibit a crystal structure that is neither zincblende nor wurtzite, and instead is derived from the original cluster. This structure is best described as a 3D polytwistane phase as deduced from a combination of X-ray diffraction, Raman, and solid-state NMR spectroscopy methods.

8.
J Vis Exp ; (147)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31132043

RESUMO

This text presents a method for the synthesis of In37P20(O2C14H27)51 clusters and their conversion to indium phosphide quantum dots. The In37P20(O2CR)51 clusters have been observed as intermediates in the synthesis of InP quantum dots from molecular precursors (In(O2CR)3, HO2CR, and P(SiMe3)3) and may be isolated as a pure reagent for subsequent study and use as a single-source precursor. These clusters readily convert to crystalline and relatively monodisperse samples of quasi-spherical InP quantum dots when subjected to thermolysis conditions in the absence of additional precursors above 200 °C. The optical properties, morphology, and structure of both the clusters and quantum dots are confirmed using UV-Vis spectroscopy, photoluminescence spectroscopy, transmission electron microscopy, and powder X-ray diffraction. The molecular symmetry of the clusters is additionally confirmed by solution-phase 31P NMR spectroscopy. This protocol demonstrates the preparation and isolation of atomically-precise InP clusters, and their reliable and scalable conversion to InP QDs.


Assuntos
Índio/metabolismo , Fosfinas/metabolismo , Pontos Quânticos/química , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa