Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 103(6): 3001-16, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375248

RESUMO

Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.


Assuntos
Córtex Cerebral/citologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Tálamo/fisiologia , Vibrissas/inervação , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Biofísica , Simulação por Computador , Estimulação Elétrica/métodos , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Limiar Sensorial/fisiologia , Sinapses/fisiologia
2.
J Neurophysiol ; 95(5): 2947-50, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16481452

RESUMO

Although it has been known for decades that monocular deprivation shifts ocular dominance in kitten striate cortex, uncertainty persists about the adequate stimulus for deprivation-induced losses of cortical responsiveness. In the current study we compared the effects of 2 days of lid closure and 2 days of monocular blur using an overcorrecting contact lens. Our finding of comparable ocular dominance shifts in visual cortex indicates that deprived-eye response depression is not a result of reduced retinal illumination. The quality rather than the quantity of retinal illumination is the key factor for ocular dominance plasticity. These data have implications for both the mechanism and treatment of amblyopia.


Assuntos
Dominância Ocular/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Gatos , Estimulação Luminosa/métodos , Privação Sensorial/fisiologia , Estatísticas não Paramétricas , Visão Binocular/fisiologia , Visão Monocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa