Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 224(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34477876

RESUMO

Sensitivity to magnetic fields is dependent on the intensity and color of light in several animal species. The light-dependent magnetoreception working model points to cryptochrome (Cry) as a protein cooperating with its co-factor flavin, which possibly becomes magnetically susceptible upon excitation by light. The type of Cry involved and what pair of magnetosensitive radicals are responsible is still elusive. Therefore, we developed a conditioning assay for the firebug Pyrrhocoris apterus, an insect species that possesses only the mammalian cryptochrome (Cry II). Here, using the engineered Cry II null mutant, we show that: (i) vertebrate-like Cry II is an essential component of the magnetoreception response, and (ii) magnetic conditioning continues even after 25 h in darkness. The light-dependent and dark-persisting magnetoreception based on Cry II may inspire new perspectives in magnetoreception and cryptochrome research.


Assuntos
Criptocromos , Campos Magnéticos , Animais , Criptocromos/genética , Escuridão , Insetos , Sensação
2.
J Chem Phys ; 152(6): 065104, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061231

RESUMO

Radical-pair reactions have been suggested to be sensitive to the direction of weak magnetic fields, thereby providing a mechanism for the magnetic compass in animals. Discovering the general principles that make radical pairs particularly sensitive to the direction of weak magnetic fields will be essential for designing bioinspired compass sensors and for advancing our understanding of the spin physics behind directional effects. The reference-probe model is a conceptual model introduced as a guide to identify radical-pair parameters for optimal directional effects. Radical pairs with probe character have been extensively shown to enhance directional sensitivity to weak magnetic fields, but investigations on the role of the reference radical are lacking. Here, we evaluate whether a radical has reference character and then study its relevance for optimal directional effects. We investigate a simple radical-pair model with one axially anisotropic hyperfine interaction using both analytical and numerical calculations. Analytical calculations result in a general expression of the radical-pair reaction yield, which in turn provides useful insights into directional effects. We further investigate the relevance of the reference character to robustness against variations of earth-strength magnetic fields and find that the reference character captures robust features as well. Extending this study to radical pairs with more hyperfine interactions, we discuss the interplay between reference character and optimal and robust directional effects in such more complex radical pairs.


Assuntos
Modelos Químicos , Sondas Moleculares/química , Animais , Anisotropia , Radicais Livres/química , Campos Magnéticos
3.
J Chem Phys ; 152(6): 065101, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061221

RESUMO

In an effort to elucidate the origin of avian magnetoreception, it was postulated that a radical-pair formed in a cryptochrome upon light activation provided the basis for the mechanism that enables an inclination compass sensitive to the geomagnetic field. Photoreduction in this case involves formation of a flavin adenine dinucleotide (FAD)-tryptophan (TRP) radical-pair, following electron transfer within a conserved TRP triad in the cryptochrome. Recently, an animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY) was analyzed, demonstrating the role of a fourth aromatic residue, which serves as a terminal electron donor in the photoreduction pathway, resulting in the creation of a more distal radical-pair and exhibiting fast electron transfer. In this work, we investigated the electron transfer in CraCRY with a combination of free energy molecular dynamics (MD) simulations, frozen density functional theory, and QM/MM MD simulations, supporting the suggestion of a proton coupled electron transfer mechanism. Spin dynamics simulations discerned details on the dependence of the singlet yield on the direction of the external magnetic field for the [FAD•- TYRH•+] and [FAD•- TYR•] radical-pairs in CraCRY, in comparison with the previously modeled [FAD•- TRPH•+] radical-pair.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Criptocromos/metabolismo , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Termodinâmica , Chlamydomonas reinhardtii/química , Criptocromos/química , Transporte de Elétrons , Radicais Livres/química , Radicais Livres/metabolismo
4.
Proteins ; 79(7): 2306-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21604304

RESUMO

Most of the currently known light-harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like "what factors govern the LH2 ring size?" and "are there other ring sizes possible?" remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8-ring from Rs. moliscianum (MOLI) and a 9-ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8-, 9-, and 10-ring geometries. After inserting each of the dimers into a lipid-water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9-ring, while MOLI is more likely to form an 8-ring than a 9-ring. Finally, we discuss both the merits and limitations of all three prediction methods.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Estatísticos , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rodopseudomonas , Rhodospirillum , Alinhamento de Sequência , Processos Estocásticos
5.
Nature ; 429(6988): 177-80, 2004 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15141211

RESUMO

Migratory birds are known to use the geomagnetic field as a source of compass information. There are two competing hypotheses for the primary process underlying the avian magnetic compass, one involving magnetite, the other a magnetically sensitive chemical reaction. Here we show that oscillating magnetic fields disrupt the magnetic orientation behaviour of migratory birds. Robins were disoriented when exposed to a vertically aligned broadband (0.1-10 MHz) or a single-frequency (7-MHz) field in addition to the geomagnetic field. Moreover, in the 7-MHz oscillating field, this effect depended on the angle between the oscillating and the geomagnetic fields. The birds exhibited seasonally appropriate migratory orientation when the oscillating field was parallel to the geomagnetic field, but were disoriented when it was presented at a 24 degrees or 48 degrees angle. These results are consistent with a resonance effect on singlet-triplet transitions and suggest a magnetic compass based on a radical-pair mechanism.


Assuntos
Migração Animal/fisiologia , Magnetismo , Modelos Biológicos , Aves Canoras/fisiologia , Animais , Europa (Continente) , Óxido Ferroso-Férrico , Geografia , Ferro/química , Ferro/metabolismo , Óxidos/química , Óxidos/metabolismo
6.
Sci Rep ; 10(1): 11260, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647192

RESUMO

How living systems respond to weak electromagnetic fields represents one of the major unsolved challenges in sensory biology. Recent evidence has implicated cryptochrome, an evolutionarily conserved flavoprotein receptor, in magnetic field responses of organisms ranging from plants to migratory birds. However, whether cryptochromes fulfill the criteria to function as biological magnetosensors remains to be established. Currently, theoretical predictions on the underlying mechanism of chemical magnetoreception have been supported by experimental observations that exposure to radiofrequency (RF) in the MHz range disrupt bird orientation and mammalian cellular respiration. Here we show that, in keeping with certain quantum physical hypotheses, a weak 7 MHz radiofrequency magnetic field significantly reduces the biological responsivity to blue light of the cryptochrome receptor cry1 in Arabidopsis seedlings. Using an in vivo phosphorylation assay that specifically detects activated cryptochrome, we demonstrate that RF exposure reduces conformational changes associated with biological activity. RF exposure furthermore alters cryptochrome-dependent plant growth responses and gene expression to a degree consistent with theoretical predictions. To our knowledge this represents the first demonstration of a biological receptor responding to RF exposure, providing important new implications for magnetosensing as well as possible future applications in biotechnology and medicine.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Criptocromos/metabolismo , Campos Eletromagnéticos , Ondas de Rádio , Evolução Biológica , Criptocromos/química , Criptocromos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Fosforilação , Plântula
7.
Biophys J ; 96(8): 3451-7, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19383488

RESUMO

The avian magnetic compass has been well characterized in behavioral tests: it is an "inclination compass" based on the inclination of the field lines rather than on the polarity, and its operation requires short-wavelength light. The "radical pair" model suggests that these properties reflect the use of specialized photopigments in the primary process of magnetoreception; it has recently been supported by experimental evidence indicating a role of magnetically sensitive radical-pair processes in the avian magnetic compass. In a multidisciplinary approach subjecting migratory birds to oscillating fields and using their orientation responses as a criterion for unhindered magnetoreception, we identify key features of the underlying receptor molecules. Our observation of resonance effects at specific frequencies, combined with new theoretical considerations and calculations, indicate that birds use a radical pair with special properties that is optimally designed as a receptor in a biological compass. This radical pair design might be realized by cryptochrome photoreceptors if paired with molecular oxygen as a reaction partner.


Assuntos
Migração Animal/fisiologia , Magnetismo , Orientação/fisiologia , Aves Canoras/fisiologia , Animais , Voo Animal , Desempenho Psicomotor/fisiologia
8.
J R Soc Interface ; 16(158): 20190285, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31530135

RESUMO

It is known that the circadian clock in Drosophila can be sensitive to static magnetic fields (MFs). Man-made radiofrequency (RF) electromagnetic fields have been shown to have effects on animal orientation responses at remarkably weak intensities in the nanotesla range. Here, we tested if weak broadband RF fields also affect the circadian rhythm of the German cockroach (Blatella germanica). We observed that static MFs slow down the cockroach clock rhythm under dim UV light, consistent with results on the Drosophila circadian clock. Remarkably, 300 times weaker RF fields likewise slowed down the cockroach clock in a near-zero static magnetic field. This demonstrates that the internal clock of organisms can be sensitive to weak RF fields, consequently opening the possibility of an influence of man-made RF fields on many clock-dependent events in living systems.


Assuntos
Blattellidae , Relógios Circadianos , Ondas de Rádio , Animais , Drosophila
9.
Neuron ; 34(4): 503-6, 2002 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12062034

RESUMO

We review the challenges and recent progress in elucidating the physiological basis of animal magnetoreception. Behavioral and theoretical studies suggest a link between photoreception and magnetoreception in some animals. Neurophysiological studies have the potential to prove this link and identify the location of and the mechanism underlying the magnetoreception system.


Assuntos
Migração Animal/fisiologia , Encéfalo/fisiologia , Magnetismo , Neurônios/fisiologia , Orientação/fisiologia , Sensação/fisiologia , Vertebrados/fisiologia , Animais , Encéfalo/citologia , Modelos Neurológicos , Neurônios/citologia , Vertebrados/anatomia & histologia , Visão Ocular/fisiologia
10.
Curr Biol ; 15(16): 1518-23, 2005 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16111946

RESUMO

A model of magnetoreception proposes that the avian magnetic compass is based on a radical pair mechanism, with photon absorption leading to the formation of radical pairs. Analyzing the predicted light dependency by testing migratory birds under monochromatic lights, we found that the responses of birds change with increasing intensity. The analysis of the orientation of European robins under 502 nm turquoise light revealed two types of responses depending on light intensity: under a quantal flux of 8.10(15) quanta m(-2) s(-1), the birds showed normal migratory orientation in spring as well as in autumn, relying on their inclination compass. Under brighter light of 54.10(15) quanta m(-2) s(-1), however, they showed a "fixed" tendency toward north that did not undergo the seasonal change and proved to be based on magnetic polarity, not involving the inclination compass. When birds were exposed to a weak oscillating field, which specifically interferes with radical pair processes, the inclination compass response was disrupted, whereas the response to magnetic polarity remained unaffected. These findings indicate that the normal inclination compass used for migratory orientation is based on a radical-pair mechanism, whereas the fixed direction represents a novel type of light-dependent orientation based on a mechanism of a different nature.


Assuntos
Migração Animal/fisiologia , Luz , Magnetismo , Orientação/fisiologia , Aves Canoras/fisiologia , Animais , Europa (Continente) , Estimulação Luminosa , Estações do Ano
11.
Polymer (Guildf) ; 49(18): 3892-3901, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-19784361

RESUMO

This article describes results on using steered molecular dynamics (SMD) simulations and experimental single molecule force spectroscopy (SMFS) to investigate the relationship between hydrogen bonding and mechanical stability of a series of homodimeric ß-sheet mimics. The dimers consisting of 4, 6, and 8 H-bonding sites were modeled in explicit chloroform solvent and the rupture force was studied using constant velocity SMD. The role of solvent structuring on the conformation of the dimers was analyzed and showed no significant contribution of chloroform molecules in the rupture event. The simulated stability of the dimers was validated by force data obtained with atomic force microscopy (AFM)-based SMFS in toluene. The computational model for the 8H dimer also offered insight into a possible mismatched dimer intermediate that may contribute to the lower than expected mechanical stability observed by single molecule AFM force studies. In addition, atomic level analysis of the rupture mechanism verified the dependence of mechanical strength on pulling trajectory due to the directional nature of chemical bonding under an applied force. The knowledge gained from this basic study will be used to guide further design of modular polymers having folded nanostructures through strategic programming of weak, non-covalent interactions into polymer backbones.

12.
J Phys Chem B ; 122(25): 6503-6510, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29847128

RESUMO

Motivated by the observations on the involvement of light-induced processes in the Drosophila melanogaster cryptochrome (DmCry) in regulation of the neuronal firing rate, which is achieved by a redox-state change of its voltage-dependent K+ channel Kvß subunit hyperkinetic (Hk) reduced nicotinamide adenine dinucleotide phosphate (NADPH) cofactor, we propose in this work two hypothetical pathways that may potentially enable such coupling. In the first pathway, triggered by blue-light-induced formation of a radical pair [FAD•-TRP•+] in DmCry, the hole (TRP•+) may hop to Hk, for example, through a tryptophan chain and oxidize NADPH, possibly leading to inhibition of the N-terminus inactivation in the K+ channel. In a second possible pathway, DmCry's FAD•- is reoxidized by molecular oxygen, producing H2O2, which then diffuses to Hk and oxidizes NADPH. In this work, by applying a combination of quantum and empirical-based methods for free-energy calculations, we find that the oxidation of NADPH by TRP•+ or H2O2 and the reoxidation of FAD•- by O2 are thermodynamically feasible. Our results may have an implication in identifying a magnetic sensing signal transduction pathway, specifically upon Drosophila's Hk NADPH cofactor oxidation, with a subsequent inhibition of the K+ channel N-terminus inactivation gate, permitting K+ flux.


Assuntos
Criptocromos/química , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Luz , NADP/química , Animais , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Flavina-Adenina Dinucleotídeo/química , Simulação de Dinâmica Molecular , Oxirredução , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Teoria Quântica , Termodinâmica
13.
Curr Opin Neurobiol ; 15(4): 406-14, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16006116

RESUMO

Recent advances have brought new insight into the physiological mechanisms that enable birds and other animals to use magnetic fields for orientation. Many birds seem to have two magnetodetection senses, one based on magnetite near the beak and one based on light-dependent radical-pair processes in the bird's eye(s). Among the most exciting recent results are: first, behavioural responses of birds experiencing oscillating magnetic fields. Second, the occurrence of putative magnetosensory molecules, the cryptochromes, in the eyes of migratory birds. Third, detection of a brain area that integrates specialised visual input at night in night-migratory songbirds. Fourth, a putative magnetosensory cluster of magnetite in the upper beak. These and other recent findings have important implications for magnetoreception; however, many crucial open questions remain.


Assuntos
Comportamento Animal/fisiologia , Aves/fisiologia , Magnetismo , Mecanotransdução Celular/fisiologia , Orientação/fisiologia , Migração Animal/fisiologia , Animais , Óxido Ferroso-Férrico , Humanos , Ferro , Luz , Óxidos
14.
PLoS One ; 12(3): e0171836, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28296892

RESUMO

Cryptochromes are evolutionarily conserved blue-light absorbing flavoproteins which participate in many important cellular processes including in entrainment of the circadian clock in plants, Drosophila and humans. Drosophila melanogaster cryptochrome (DmCry) absorbs light through a flavin (FAD) cofactor that undergoes photoreduction to the anionic radical (FAD•-) redox state both in vitro and in vivo. However, recent efforts to link this photoconversion to the initiation of a biological response have remained controversial. Here, we show by kinetic modeling of the DmCry photocycle that the fluence dependence, quantum yield, and half-life of flavin redox state interconversion are consistent with the anionic radical (FAD•-) as the signaling state in vivo. We show by fluorescence detection techniques that illumination of purified DmCry results in enzymatic conversion of molecular oxygen (O2) to reactive oxygen species (ROS). We extend these observations in living cells to demonstrate transient formation of superoxide (O2•-), and accumulation of hydrogen peroxide (H2O2) in the nucleus of insect cell cultures upon DmCry illumination. These results define the kinetic parameters of the Drosophila cryptochrome photocycle and support light-driven electron transfer to the flavin in DmCry signaling. They furthermore raise the intriguing possibility that light-dependent formation of ROS as a byproduct of the cryptochrome photocycle may contribute to its signaling role.


Assuntos
Criptocromos/metabolismo , Drosophila melanogaster/metabolismo , Luz , Fotoperíodo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Humanos , Cinética , Teoria Quântica , Spodoptera
15.
J R Soc Interface ; 3(9): 583-7, 2006 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16849254

RESUMO

Recently, oscillating magnetic fields in the MHz-range were introduced as a useful diagnostic tool to identify the mechanism underlying magnetoreception. The effect of very weak high-frequency fields on the orientation of migratory birds indicates that the avian magnetic compass is based on a radical pair mechanism. To analyse the nature of the magnetic compass of mammals, we tested rodents, Ansell's mole-rats, using their tendency to build their nests in the southern part of the arena as a criterion whether or not they could orient. In contrast to birds, their orientation was not disrupted when a broad-band field of 0.1-10MHz of 85nT or a 1.315MHz field of 480nT was added to the static geomagnetic field of 46000nT. Even increasing the intensity of the 1.315MHz field (Zeeman frequency in the local geomagnetic field) to 4800nT, more than a tenth of the static field, the mole-rats remained unaffected and continued to build their nests in the south. These results indicate that in contrast to that of birds, their magnetic compass does not involve radical pair processes; it seems to be based on a fundamentally different principle, which probably involves magnetite.


Assuntos
Magnetismo , Ratos-Toupeira/fisiologia , Comportamento de Nidação/fisiologia , Animais , Feminino , Masculino
16.
Sci Rep ; 6: 35443, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27804956

RESUMO

The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

17.
Front Plant Sci ; 7: 888, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446119

RESUMO

Cryptochromes are flavoprotein photoreceptors with multiple signaling roles during plant de-etiolation and development. Arabidopsis cryptochromes (cry1 and cry2) absorb light through an oxidized flavin (FADox) cofactor which undergoes reduction to both FADH° and FADH(-) redox states. Since the FADH° redox state has been linked to biological activity, it is important to estimate its concentration formed upon illumination in vivo. Here we model the photocycle of isolated cry1 and cry2 proteins with a three-state kinetic model. Our model fits the experimental data for flavin photoconversion in vitro for both cry1 and cry2, providing calculated quantum yields which are significantly lower in cry1 than for cry2. The model was applied to the cryptochrome photocycle in vivo using biological activity in plants as a readout for FADH° concentration. The fit to the in vivo data provided quantum yields for cry1 and cry2 flavin reduction similar to those obtained in vitro, with decreased cry1 quantum yield as compared to cry2. These results validate our assumption that FADH° concentration correlates with biological activity. This is the first reported attempt at kinetic modeling of the cryptochrome photocycle in relation to macroscopic signaling events in vivo, and thereby provides a theoretical framework to the components of the photocycle that are necessary for cryptochrome response to environmental signals.

18.
Sci Rep ; 6: 38543, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27995996

RESUMO

Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O2) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O2•-) and hydrogen peroxide (H2O2) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics.


Assuntos
Metabolismo Energético , Células Endoteliais da Veia Umbilical Humana/metabolismo , Teoria Quântica , Espécies Reativas de Oxigênio/metabolismo , Simulação por Computador , Humanos , Campos Magnéticos , Análise Numérica Assistida por Computador , Quinonas/química , Quinonas/metabolismo , Superóxidos/metabolismo
19.
J R Soc Interface ; 12(103)2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25540238

RESUMO

The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field.


Assuntos
Galinhas , Campos Magnéticos , Orientação , Ondas de Rádio , Aves Canoras , Animais
20.
Plant Signal Behav ; 10(9): e1063758, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313597

RESUMO

Cryptochromes are blue-light absorbing flavoproteins with multiple signaling roles. In plants, cryptochrome (cry1, cry2) biological activity has been linked to flavin photoreduction via an electron transport chain to the protein surface comprising 3 evolutionarily conserved tryptophan residues known as the 'Trp triad.' Mutation of any of the Trp triad residues abolishes photoreduction in isolated cryptochrome protein in vitro and therefore had been suggested as essential for electron transfer to the flavin. However, photoreduction of the flavin in Arabidopsis cry2 proteins occurs in vivo even with mutations in the Trp triad, indicating the existence of alternative electron transfer pathways to the flavin. These pathways are potentiated by metabolites in the intracellular environment including ATP, ADP, AMP, and NADH. In the present work we extend these observations to Arabidopsis cryptochrome 1 and demonstrate that Trp triad substitution mutants at W400F and W324F positions which are not photoreduced in vitro can be photoreduced in whole cell extracts, albeit with reduced efficiency. We further show that the flavin signaling state (FADH°) is stabilized in an in vivo context. These data illustrate that in vivo modulation by metabolites in the cellular environment may play an important role in cryptochrome signaling, and are discussed with respect to possible effects on the conformation of the C-terminal domain to generate the biologically active conformational state.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Metaboloma , Transdução de Sinais , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Extratos Celulares , Dicroísmo Circular , Criptocromos/química , Transporte de Elétrons/efeitos da radiação , Flavinas/metabolismo , Luz , Metaboloma/efeitos da radiação , Modelos Biológicos , Mutação/genética , Oxirredução/efeitos da radiação , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa